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Abstract 

We present developments in the control of the temporal pulse shape of nanosecond long pulsed lasers. An active 
feedback loop between the output of a regenerative amplifier and its input to obtain the desired pulse shape is 
demonstrated. Several algorithms to achieve this, and the differences due to the targeted pulse shape and 
duration, are compared in this paper. It is found that the algorithm that is based on the ratio of the target and 
measured pulse profiles provides the most robust solution. The method proposed here can be used to obtain any 
pulse shape with minimal knowledge of the laser amplification system. 
 

1 Introduction 

The need to control the temporal profile of 
nanosecond long laser pulses is important for a wide 
range of experiments conducted on Vulcan. Unlike 
femtosecond lasers which have been widely studied 
[1], the temporal profile of nanosecond lasers can be 
controlled electronically. Temporal resolutions of 
100s of picoseconds can be obtained using 
conventional electronics to shape the pulse, by 
means of Pockels cells [2, 3], or directly modulate 
laser diodes by controlling their current [4], or using 
an optical fibre-based low voltage electro-optic 
modulator (EOM).  

We have been able to control the temporal profile at 
the output of a regenerative amplifier (RGA) by 
controlling the temporal profile of the seed laser. 
The seed pulse is generated using an EOM and an 
arbitrary waveform generator (AWG). To generate 
the required temporal profile, some authors [3, 5, 6] 
have calculated pulse temporal deformations due to 
saturation using simulations and/or analytical 
models. These models rely on the value of the 
saturation fluence and the small signal gain 
remaining constant. However, these models assume 
static conditions and cannot easily accommodate 
other temporal effects or day-to-day changes. 
Therefore, we have developed a feedback system 
that enables the output pulse to be maintained even 
if the other parameters change. 

To demonstrate this we have used an RGA in which 
the pulse propagates 50 passes within the amplifier; 
furthermore, both the Pockels cell (PC) inside the 
RGA and the external contrast PC have a temporally 
non-uniform transmission. In addition to the square 
pulse distortion expected in saturated amplifiers, the 
pulse overlaps in the gain medium; this creates an 
additional temporal feature as shown in Figure 1. 

Figure 1 shows an initially 5 ns top-hat pulse (yellow) 
that is amplified in the RGA: the feature at 3.5 ns 
(blue) is due to the pulse overlap in the gain 
medium. Lastly, on a long term time scale, slight 
misalignments will change the saturation in the RGA. 

 

Figure 1: Deformation of the pulse temporal profile due to 
our RGA system. We input a 5 ns top hat temporal profile 
in into our system (in yellow) and get the blue waveform 
at the output. After the described corrections we obtain 
the waveform in red. 

In this paper, we present the results for three 
feedback algorithms: one that simply uses the 
difference between the temporal profile of the seed 
pulse and the output pulse; a second one that uses 
the same idea but with an adaptive proportionality 
constant; and a third one that uses the ratio of the 
two temporal profiles. We investigated top hat, 
exponential and ramp pulse shapes for durations of 
1, 3 and 5 ns. We start by presenting the 
architecture of our system and explain how we 
match and calibrate the relative time bases of our 
measurement system and the AWG control (Section 
2). In Section 3, we present our experimental 
parameters: the target pulse shapes and the 
algorithms that were tried, and give details of how 
we analyze them in Section 4. Subsequently we 
present our results in Section 5. 

mailto:pedro.oliveira@stfc.ac.uk


- 2 - 

2 Architecture of our ns RGA laser system 

The architecture of our system is as follows. A 
continuous-wave (CW) (100mW) laser is sliced using 
a modulator (LiNbO3 EOM, NIR-MX-LN-10 ixblue). 
These pulses are then injected into an RGA cavity, 
where the pulse is amplified to the mJ level. At the 
output of the RGA, a Pockels cell (CPC) is added in 
order to improve the contrast of the laser pulse, 
after which the pulse is further amplified in an 
amplifier chain. At the output of this system we have 
a fibre-coupled photodiode (PD, DET08CFC/M) 
connected to a 12.5 GHz oscilloscope (DPO71254C). 
The oscilloscope communicates with our CPU via an 
Ethernet connection. The voltage applied to the 
EOM is controlled by an AWG, which in turn is 
controlled using a serial port connection to our CPU 
(Figure 2). 

 

Figure 2: The architecture used in our study 

The relation between the transmission of the EOM 
and the AWG output voltage, VAWG, is defined by a 
sine square function (as given by the supplier 
datasheet). Controlling this transmission allows us to 
control the intensity of the seed. The AWG used 
during this experiment has a temporal window of up 
to 30 ns comprising individual Gaussian pulses that 
are spaced a nominal 100 ps apart. The voltage of 
each individual pulse can be set between 0 and 5 V. 
In order to calibrate the time scale between the 
control in the AWG and the measurement in the 
oscilloscope, we generated a picket fence pulse 
shape with a spacing of 10 samples. The voltage on 
this picket fence is the maximum transmission 
voltage (𝜋

2
 voltage). We detected the peaks of this 

picket fence (shown in Figure 3) and, from this, 
made a linear adjustment between the detected 
peak times on the oscilloscope and the defined 
peaks in the AWG. 

The temporal profile measured by the detection 
system is the convolution of the actual pulse profile 
and the impulse response of the detection system. 
To determine the impulse response of the system, 
we used a 3 ps and a 10 ps laser pulse to determine 
that it has a FWHM of 142 ps. We then fitted a 
Gaussian curve to the impulse response and used 
this as a low pass filter. It is this low pass filtered 
waveform that we used as our target waveform, as 
shown in Figure 4. 

 

Figure 3: The picket fence as acquired by the oscilloscope. 
In this instance the timing between samples was 102 ps 
(top-right) Linear relation between the sample number 
and the time stamp 

 

 

Figure 4: Target pulse profiles before and after the use of 
the instantaneous response, a) 1 ns exponential, and b) a 
3 ns top hat. 

3 Methods and experimental parameters 

To study the feedback algorithms under test, we 
scanned for differences in the pulse duration, and 
several types of pulse shapes. We used an 
exponential pulse shape with 1 ns, 3 ns and 5 ns 
pulse duration. The non-filtered exponentials will be 
determined by the equation: T(t) = exp (t/C), where 
T(t) is the target waveform in which C is chosen so 
that the exponential goes from 0.4 of the maximum 
to the maximum within the pulse duration (blue line 
in Figure 4). We also studied a 1 ns and 5 ns top hat 
shape: in these cases, the rise time of the AWG was 
important (200 ps). In addition, we used a ramp 
profile which went from 0 to maximum in 5 ns. 
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3.1 Algorithms used to correct the pulse shape 

We analyzed four possible algorithms; all of the 
feedback loops compare the pulse profile obtained 

at the output of the previous loop, Rn−1(t), to the 

target profile, T(t), and then modify the input seed 

profile, Sn−1(t), to determine the next seed pulse 

profile to apply, Sn(t). For all these algorithms we 
started by inputting the desired waveform (non-
filtered) as a first guess. The result of this input 
begins the feedback loop. The first algorithm (Eq. 
(1)) is based on the difference between the target 
profile T(t) and the obtained pulse profile on the last 
iteration, where P is a variable set in the feedback 
loop. 

𝑆𝑛(𝑡)  =  𝑆𝑛−1(𝑡)  +  𝑃(𝑇(𝑡)  − 𝑅𝑛−1(𝑡)) (1) 

The second algorithm uses the same relation as that 
expressed in Eq.(1), but the proportionality constant 
is dependent on the error obtained on the previous 

iteration, ϵn−1 (defined in Eq.(5)). After some trials, 

we decided to try a non-linear expression in which 
we would have a certain maximum P defined as the 
initial error and a decrease in P with a decrease in 
error. The term ϵ0 in Eq. (2) is the error given on the 
first trial. 

𝑃𝑛(𝑡) =   𝑃𝑚𝑎𝑥  [1 −  (
𝜖𝑛−1

𝜖0
− 1)] (2) 

The third algorithm is based on the ratio between 
the target and the obtained waveform. 

𝑆𝑛(𝑡) =   𝑆𝑛  (𝑃 (
𝑇(𝑡)

𝑅𝑛−1
− 1) − 1)  (3) 

We explored a fourth algorithm. Similarly to the first 
algorithm, we used the difference between the 
result of the previous and the target shape to obtain 
the seed of the following iteration. In this algorithm, 
however, we also used the results from previous 
iterations and the difference between the target and 
the result, as expressed in Eq. (4). 

𝑆𝑛+1(𝑡) =   𝑆𝑛(𝑡) + 𝑃(𝑇(𝑡) −  𝑅𝑛(𝑡) +

𝐼 
1

𝑛
 ∑ (𝑇(𝑡) −  𝑅𝑛(𝑡))𝑛             (4) 

This last algorithm has two parameters to scan, so 
we only applied it to the 3 ns exponential. We did 
not find any value of I in Eq. (4) that improved the 
speed or precision of the algorithm and so we do not 
present the results of this investigation in this paper. 
In all algorithms after using Eqs. (1) to (3) the seed 
pulse profile was renormalized. This allowed the 
maximum voltage on the AWG to be equal to the 
half-wave voltage of the modulator. We scanned the 
parameter P for algorithms 1 and 3, and Pmax in 
algorithm 2, for values from 0 to 1 in 0.1 steps, and 

for each parameter we did 28 iterations. 

4 Data Analysis 

In this section we describe the methods used to 
consistently analyze more than 5,600 pulse shapes. 

4.1 Definition of error and nonlinear error 

As we want to compare different pulse shapes, there 
is a risk that quantizing the normalization of these 
pulse shapes is an ambiguous procedure. To 
minimize this risk, we chose an error definition 
based on a standardized second momentum (Eq.(5)). 
This definition: minimizes the error; does not 
depend on normalization of the result; does not 
depend on normalization of the target; and does not 
depend on the number of points used to calculate 
the error and hence on the pulse duration. This is a 
slightly different version of what is used in ultrafast 
pulses [1]. We represent each point of the targeted 
shape as T(t) and of the result as R(t). 

𝜖 =   √
∑(𝑇(𝑡)− 𝛾𝑅(𝑡))2

∑ 𝑇(𝑡)2    (5) 

where: 

𝛾 =  
∑(𝑇(𝑡)𝑅(𝑡)

∑ 𝑅(𝑡)2    (6) 

Because this measurement is taken ad hoc, some 
local anomalies might not be detected. It is 
necessary to go further and define an error that 
highlights local anomalies. To achieve this, we define 
a nonlinear error given by Eq. (7) 

𝜖𝑁𝐿 =  √
∑(𝑇(𝑡)− 𝛾𝑅(𝑡))10

∑ 𝑇(𝑡)10

10
   (7) 

Each time we determined the resulting pulse shape 
we use an average of 10 sequential acquisitions to 
minimize random static error.  

4.2 Convergence and error analysis 

The characteristic result is a reduction of the error 
and a convergence of the temporal profile to our 
target; we show this in Figure 5. In this figure, we 
illustrate how the error between the target and 
output profile reduces as function of the number of 
iterations. 

By fitting an exponential fit to the error as a function 
of the iteration number we can evaluate the speed 
of convergence, base error and whether the error 
converged or not (Eq.(8)). 

𝐹 = 𝐴 exp(−𝑆𝑛) −  𝐷𝑛 + 𝜖𝐵   (8) 

F is the fitting function; n is the iteration number; S 
is a measurement of the speed (to be more precise it 
is the number of iterations that it takes for the 
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variation in error to decrease by e−1 of the maximum 
variation); EB is the base of the curve; and D is a 
measurement of the divergence. Fitting this curve 
provides us with a systematic and a quantitative 
analysis of the results that is not sensitive to 
transient numerical fluctuations. 

 

Figure 5: Error decrease with the iteration number (blue 
curve) using a 5 ns exponential waveform and the curve 
fitted to this (red curve) 

5 Results 

In Figures 6 to 11 we present the results for the 
speed of convergence, and the minimum obtained 
error for each of the pulse shapes, for each of the 
algorithms and for each of the P parameters. For 
those data sets where the exponential fit to the 
decrease of the error was not adequate, the speed 
does not appear in the plots; however, we still plot 
the minimum error obtained at each loop trial, even 
if there was no point in calculating the speed of the 
decrease. 

 

Figure 6: Speed and minimum error for a 1 ns exponential 
function 

 

Figure 7: Speed and minimum error for a 3 ns exponential 

 

Figure 8: Speed and minimum error for a 5 ns exponential 

 

Figure 9: Speed and minimum error for a 5 ns ramp curve 

 

Figure 10: Speed and minimum error for a 5 ns top hat 
pulse 

 

Figure 11: Speed and minimum error for a 1 ns top hat 
pulse. 

6 Discussion 

For the first and second algorithms, the behaviour is 
only exponential for P < 0.7. Algorithm 1 is more 
unstable because it fails for some values of P smaller 
than 0.65. Algorithm 3 works for every value of P. 
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For all algorithms, as the value of parameter P 
increased, the speed of convergence increased. In 
fact, except for 5 ns top hat profiles, we can also say 
that for a certain value of P all the algorithms have 
the same speed: this means that algorithm 3 can 
converge more quickly than the other algorithms, 
because it can operate at higher values of P. 

For the 5 ns top hat profile, it is shown that the 
speed of algorithm 1 is about 50% of what we 
observe for the other pulse shapes. For this same 
shape and duration, algorithms 2 and 3 have a speed 
reduced by 30% in comparison with other pulse 
shapes, which is easily explainable because, in this 
pulse shape, the front of the pulse has more 
influence over what happens on the back of the 
pulse than other pulse shapes. 

Comparing the same pulse shape but different pulse 
durations we observe that for 1 ns pulse duration a 
speed that is smaller than for longer pulse durations 
(by approximately 50%). 

When considering all P values, we seem to be able to 
obtain the same error for 3 ns and 5 ns no matter 
the algorithm used; however, for algorithm 3 the 
same minimum error was only obtained for P values 
bigger than 0.7. 

The error between 1 ns pulses and 3 ns pulses 
characteristically decreased by a factor of two (from 
0.04 to 0.02), but between 3 ns and 5 ns the 
decrease was negligible (0.02 to 0.018). 

For the same pulse duration, the differences in the 
minimum obtained error between the several 
shapes that we tried (top hat, ramp and exponential) 
were negligible. 

7 Conclusion 

In this paper, we have presented a method to 
correct the temporal pulse profile at the output of a 
regenerative amplifier by changing the seed pulse 
using a feedback loop. This method considers the 
instantaneous response and matches the relative 
timescales of the seed and the output. This method 
is applied simply using knowledge of the input and 
the output of the system, without any simulation of 
the amplifier itself or the elements in it. 

The analysis of the results is based on an exponential 
decrease of the error as a function of the number of 
iterations. The error was defined to be independent 
of pulse duration, shape and the normalization of 
the target and the result temporal profile. 

We have presented results on three algorithms that 
can be used for this effect, two in which the 
correction is based on the difference between the 
target profile and the profile obtained for a certain 
seed, and a third that is based on the ratio of both 
profiles. 

We observed a significant difference in terms of 
accuracy between pulses of 1 ns and 3 ns, but 
negligible difference between 3 ns and 5 ns. This 
might be because the response time of both the 
seed system and the measuring system is on the 
order of 150 ps. 

In order to maximize the accuracy of the shape and 
the speed of the algorithm, the proportionality 
factor P should be within the range 0.5-0.65 for the 
first two algorithms, whereas a parameter value 
within the range of 0.7-0.9 is optimal for the third 
algorithm. 

For both algorithms 1 and 2, the values of P that 
make the algorithm stable but lead to higher values 
of speed are between 0.5-0.65. We conclude by 
saying that the method that minimizes the error and 
presents the biggest speed of convergence is 
algorithm 3 with P values in the range 0.7 to 0.9. 
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