6. Science Opportunities in Chemical Sciences and Energy

Virtually any chemical reaction is accompanied by simultaneously occurring structural, electronic, and often spin-changes.

XFELs give unique and incisive access to these dynamics which are vital to scientific understanding and to myriad of real-world applications.

- **6.1** Fundamentals of reaction dynamics: Coupling between nuclear, electronic and spin degrees of freedom
- 6.2 Exploring complex energy landscapes through chemical activation
- 6.3 Energy materials and devices: Solar cells and batteries
- **6.4** Understanding catalysis
- 6.5 Chemistry and the environment: Aerosols, atmospheric, space

chemistry, combustion, corrosion Chemical Sciences team:

Project Lead:
Jon Marangos (UCL)
STFC Project Champion:
John Collier (CLF)

6. Science Opportunities in Chemical Sciences and Energy

Lanthanum	Cerium	Pr Praseodymium	Neodymium	Promethium	Sm Samarium	Europium	Gadolinium	Tb Terbium	Dy Dysprosium	Ho Holmium	Er Erbium	Tm Thulium	Yb Ytterbium	Lu Lutetium
89 Ac	90 Th	91 Pa	92 U	93 N p	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
Actinium (227)	Thorium 232.0377	Protactinium 231.03588	Uranium 238.02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (254)	Nobelium (259)	Lawrencium (266)

The time-resolution

6. Science Opportunities in Chemical Sciences and Energy

6. Challenges in Chemical Sciences and Energy: an overview

Ground-State Chemistry Triggered

by Dynamics through a Conical

Angew. Chem. Int. Ed., 55, 14993 (2016)

Charge- and energy transfer dynamics

Plasmonic Photocatalysis

Spin dynamics:

Vibrational coherence in single-molecule magnets

Nature Chem. 452 (2020)

Solvent-Solute interactions

Translational,

and vibrational

relaxation dynamics

rotational

Nature Chem. 8, 242 (2016)

6. Opportunities in Chemical Sciences: Tools and Goals

- G

- Predict photochemical processes
- Relate reactivity and quantum-chemical concepts
- Learn fundamental chemistry in proteins, metalloproteins, photoresponsive proteins
- Explain and control photocatalytic function
- Develop new efficient materials for solar applications, information, and security

PROBE: Many of these techniques can be used simultaneously

Initiate the reactions by: THz-IR-Vis-UV, Electron beam

X-ray Spectroscopy:

- X-ray absorption: Probe Structure and Unoccupied Electronic Density of states.
- X-ray emission: Probed Occupied Density of States. **SPIN!**
- Resonant X-ray Emission: High resolution experiments.
- *X-ray Raman*: Probe edges of light elements using harder X-rays.

X-ray scattering:

Time evolution and structural dynamics of global structure.

Towards femtosecond-, < 0.01Å- molecular movies

6.1. Fundamentals of reaction dynamics

X-ray SPECTROSCOPY: Element- and site-specific probing

RIXS = Time-resolved resonant inelastic X-ray scattering, the X-ray analogue of resonance Raman scattering.

Probing HOMO-LUMO frontier-orbital interactions upon ligand dissociation (CO) from $Fe(CO)_5$ by time-resolved RIXS at the $Fe\ L_3$ edge.

The "movie" part:

The applications part:

- Spin-change
- Magnetic materials
- Fundamentals of chemical reactivity

Ligand dissociation

Primary step in catalysis

Incident energy (eV)

Fig. 6.12, from Wernet et al. "Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)₅ in solution" Nature 520, **78** (2015)

6.1 Fundamentals of reaction dynamics: Coupling between nuclear, electronic and spin degrees of freedom

Element- and site-specific probing

Soft X-ray: organic molecules - C, N, O edges

Photochemistry of DNA

Fig. 6. 4. TR-AES and TR-NEXAFS reveals possible relaxation paths a $\pi\pi^*$ state of thymine populated by UV-pulse, to the dark $n\pi^*$ state and to the ground state via conical intersections. [Nat. Comm. 8, 29, (2017)]

Areas:

- Fundamental photochemistry
- Reaction mechanisms
- Photoprotection
- DNA damage
- Free radicals in biology &medicine
- Photovoltaics
- Photocatalysis
- ...your science

Hard X-ray: metals

6.1 Fundamentals of reaction dynamics: spin, charge, structure

Correlated spin and structural dynamics

the dissociation/recombination of NO to Fe-centre in **Myoglobin.**

Structures of the short-lived intermediates by XAS and WAXS;

bonds which reversibly form and break. PDB 2FRJ.

 Spin information from XES monitoring high /low-spin transition.

Kinschel et al, 2020,

https://arxiv.org/ftp/arxiv/papers/2005/2005.05598.pdf

The "movie":

- Ligand dissociation
- Primary steps in protein dynamics

The applications:

- Enzyme catalysis
- Photoprotection
- Drug-target
- ...your science

-S-S- bonding in proteins

The fs-TRXAS...shows that gas-phase CH₃-S-S-CH₃...undergoes fast direct dissociation into 2 H₃C-S●.

J. Phys. Chem. Lett. 10, 1382 (2019)

Next:

WAXS

to follow the formation and breaking of H-bonds, the changes of electron density of the protein ligands.

Need:

- higher sensitivity,
- high repetition rate,
- multiple detection, correlative XAS and XES methods, and RIXS, e.g.

Towards detailed molecular movie in chemistry and biochemistry

Mechanisms of light-driven therapies (PDT), antimicrobial resistance, real-time imaging of intracellular small molecule-biomolecule interaction

Recent huge advances in transition metal complexes as PDT drugs, antimicrobial agents, singlet oxygen sensitisers – Pt, Re, Ru, Ir, Co, Cu, Fe.....

Questions that could be tackled ONLY by femtosecond-millisecond structural methods:

- Dynamics of drug-organelle interaction;
- Dynamics of DNA damage by ¹O₂;
- What are structural changes in the drug itself;
- What are cooperative effects;
- 1st step in PDT...

Directly linked to:

- Radiation damage of DNA
- Protein dynamics, signalling pathways
- Therapies

Fig. 6. 6. McKenzie et al, Chem Eur J, 2017

Important: sample delivery, energies, rep rates, precious samples, sensitivity. complementary to emission lifetime imaging, TEM, CLEM – is there potential for 4D imaging? SciFi....

6.4. Understanding Catalysis with XFELs

Molecular Photocatalysis, Heterogeneous Photocatalysis, Light-Absorbing Semiconductors

Applications: CO₂ reduction; Water oxidation; Solar fuel; Artificial Photosynthesis

Solar-harvesting materials

Cu Zn Sn S

Applied Physics A **124**, Art. N: 225 (2018)

Cu₂ZnSnS₄ nanoparticles:

Earth abundant solar cell material, which has complex dynamics.

Ability to probe **each absorption edge** would give unique complementary insight into excited state processes.

Simultaneous detection

Fig. 6.13. Schematic of a XES experiment performed in the soft and the hard X-ray regime simultaneously [Y. Kayser et al. "Core-level nonlinear spectroscopy triggered by stochastic X-ray pulses". Nat. Commun. 10, 1, (2019)

Simultaneous Detection of Different edges, Different Components (organic / metal); of spin- and structural dynamics in a photocatalytic system, in real conditions

6.4. Understanding Catalysis with XFELs

Multinuclear molecular catalysts; intermolecular electron- and energy transfer

(a) Co K α 1 Δ SXES(t) at 2.5 (red) and 20 ps (blue) pump-probe delay. 1 Co $^{||}$ (LS) \rightarrow 4 Co $^{||}$ (HS) (b) Kinetic trace at 6.93 keV.

This optical pump-X-ray probe detection scheme combining XES and XDS on photoexcited species in solution was implemented at the SACLA XFEL facility.

Canton et al. *Nat. Comm.* 6, Art. N. 6359, (2015)

Simultaneous Detection of Different edges, Different Components (organic / metal); of spin- and structural dynamics in a photocatalytic system, in real conditions

6. 4. Understanding Catalysis with XFELs

Molecular Photocatalysis

Example: Cu(I) photosensitisers

Fig. 6.5 Light-triggered distortion in a Cucomplex. Iwamura et al. JACS, 133, 7728 (2011)

Materials, surfaces and interfaces:

- Charge flow inside semiconducting structure;
- The nature of losses in materials perovskite solar cells, silicon
- Dynamics of electron transfer from the SC to the catalyst – structural dynamics on surfaces
- Exciton diffusion

Example: A photocatalytic system for H₂ generation and CO₂ reduction

a molecular catalyst Co(bpy)₃²⁺, with light-harvesting polymeric carbon nitride nanosheets.

End of Part 1 on Scientific Opportunities in Chemical Sciences and Energy –

Part 1 presented:

- 6. 0. Introduction and Overview of Scientific Opportunities in Chemical Sciences in Energy from XFELs;
- 6.1 Fundamentals of reaction dynamics: Coupling between nuclear, electronic and spin degrees of freedom
- 6.4 Understanding catalysis

Over to Russell Minns (U. Southampton), who will talk about

- 6.2 Exploring complex energy landscapes through chemical activation
- 6.3 Energy materials and devices: Solar cells and batteries
- 6.5 Chemistry and the environment: Aerosols, atmospheric, space chemistry, combustion, corrosion