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Introduction

In laser-wakefield acceleration, the strong plasma
wakefields are not only capable of accelerating electrons,
but also of changing the frequency (energy) of the photons
in the driving laser pulse™ . For this concept to work, the
laser frequency commonly needs to be much higher than
the plasma frequency, so the space and time scales of the
plasma perturbations are much larger than the photon
wavelength and period. In this case, geometric optics can
be used to describe the motion of the electromagnetic
wave-packets as well as the influence of the plasma on this
motion !, The action of the photons on the plasma can be
described through the action of the ponderomotive force .
Experimental confirmation of photon acceleration by
laser-induced wakefields was first reported by Murphy,
Trines et al. ™.

In this paper, we will investigate the role of photon
acceleration in the modulational instability of a laser beam
in a plasma. The modulational instability is an effect that
tends to break up an initially uniform electromagnetic
(EM) wave propagating through a plasma, and can be
understood in terms of the ponderomotive force. If the
EM wave amplitude has a maximum at some point, then
the ponderomotive force tends to push plasma away from
that point and to produce a region of reduced density. The
variation with density of the plasma refractive index is
such that the EM wave tends to be refracted towards
regions of lower density, with the result that the original
amplitude perturbation is enhanced. If the break-up is in
the direction of propagation, it is called the modulational
instability, while a transverse break-up is called the
filamentation instability. Detailed information on the
modulational instability can be found in Refs. ",

From the work by Silva et al. ** and Mendonga !, it
follows that the back action of the laser’s ponderomotive
force will change the momentum (wave number) and
energy (frequency) of the laser’s photons themselves. Thus,
the modulational instability will not only change the
envelope of the laser beam in real space, but also its
Fourier spectrum. In particular, the spectrum will broaden
and a series of peaks will emerge on that are separated by
much less than the plasma frequency (so they can be
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distinguished from mere stimulated Raman scattering),
while ionization blueshift would shift the spectrum as a
whole (cf. Koga et al. ") rather than modulating it. The
extent of the spectral broadening and the separation of the
peaks are a measure of the amplitude of the laser-driven
wakefield, and can be used to diagnose this wakefield. In
this paper we will discuss the spectral modulations of the
driving laser pulse itself; as an alternative (e.g. when the
driving pulse is too short to be properly modulated) a
long, low-intensity ‘witness’ pulse can be launched
simultaneously with the driving pulse, and the wakefield
can be studied through modulations of this witness pulse.

Theory

The modulational instability causes the fundamental
spectral peak of the laser to split into several narrower
peaks, having a mutual separation much smaller than o_.
It will have the same effect on any (anti-)Stokes peaks in
the spectrum, although we did not study this in our
experiment. This distinguishes the modulational instability
from e.g. stimulated Raman scattering, which only
produces discrete peaks separated by the plasma frequency
o, This can be understood as follows.

Consider a laser EM field E = E, exp i(kx — o,t)
propagating through a plasma slab of thickness s and density
n,, accompanied by a co-propagating plasma density
perturbation 6n = 8n, cos(kpx - mpt) with kp = komp/(oo. The
dispersion relation of the laser wave is given by:

D = w?— e2k2— (eXeym,)(nly) = 0, (1)

where v denotes the relativistic Lorentz factor due to
plasma electron motion and other symbols have their usual
meaning. After traversing the plasma slab, the laser
frequency will have been modulated periodically:

® = 0, + dw, with (using ray tracing theory):

do kg _ 9D/9t k8

szE o~ 9OD/dw ®

~5— —— 5 - —=— 0w, sin(k,x — 0,0,
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with 3o/, = ks 2/(20,2)dny/n,. Using standard series
expansions™, we find that, after passage through the
plasma slab, the modulated laser field takes the form:

E =~ E; exp i(kox — [0y — dwy sin(k,x — w,]1)
= Eyexp i(kyx — 0ot) Y, J,(tdw,) exp il(k,x — 0,0).
[=—00

For fixed x, we find that the modulated frequency
spectrum of E now contains peaks at o, * 1(1)p * dw,,
1=0, 1,2, ... Note that the frequency shifts of 8w are a
direct consequence of the fact that the Bessel functions J,
are approximately periodic with period 2 w. While the
(anti-)Stokes peaks at w,*lm_ will also occur for “classical’
Raman scattering of a monochromatic beam, the
additional contribution of +3w, is typical for a beam that
is frequency-modulated by photon acceleration. These
modulations will be most visible around the fundamental
peak of the laser spectrum, and our experiments will also
concentrate on the study of this peak.

In realistic situations, the density perturbation will not
have constant amplitude along the length of the laser
pulse; instead, the perturbation will be driven resonantly
by the modulated pulse and its amplitude will increase
from the front to the back of the pulse. Therefore, each
period of the density perturbation covered by the pulse
will add contributions at 3w, for a different value of S,
This will cause the fundamental laser peak to separate into
a series of narrow peaks separated by dm, << o, This
separation increases with increasing plasma density, as
B, ~ 0, ~ n,'”2. By determining the background density
n, and the thickness of the plasma slab s, it can be worked
out what the wakefield amplitude must have been.
Therefore, study of the spectral modulations induced by
photon acceleration of a long laser pulse may eventually
yield a single-shot wakefield diagnostic.
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Simulations

We have performed simulations to match the experiments,
using a photon kinetic numerical code. In this code, the
individual electromagnetic wave modes that make up the
finite-length, finite-bandwidth laser pulse are treated as
particles, while the electron plasma is treated as a fluid.

A detailed description of the model can be found
elsewhere ™. Simulation parameters were as follows:

a 45 fs, bandwidth limited pulse with A = 800 nm was
chirped (lowest frequencies first) and stretched to a
FWHM of 180 fs and a peak amplitude of eA/(mc) = 0.4.
The plasma density n, was 2, 4, 8 or 16 x 108 cm™ giving
O)O/mp =29, 4,20.9, 14.9 or 10.4 respectively. For

n, = 1.6 x 10! cm™, a snapshot was taken after

ot = 7200, or about 9 mm propagation length.

Simulation results are shown in figures 1 (n, = 1.6 x 10'% cm™
only) and 2 (all densities). The left frame of Figure 1 shows
the frequency spectrum of the transverse EM field (laser
field) after 9 mm of propagation. It can clearly be seen that
the fundamental peak of the spectrum has separated into
several peaks. The corresponding photon distribution as a
function of x and k can be seen in the right frame. The
photon distribution has been modulated by the underlying
plasma wave, and various populations of photons can be
seen both above and below the original wave number

k, = 10.4*kp. These photon populations are responsible for
the peaks in the spectrum: where the original photon
distribution consisted of only one population which caused
only one peak, the final distribution consists of a number of
photon populations that have been accelerated to wave
numbers different from k, and thus contribute individual
peaks to the laser spectrum.

The main features of the laser spectrum in figure 1 are the
distinctive peaks separated by about ®_. These are the
standard (anti-)Stokes peak corresponding to classical
Raman forward scattering, whose emergence has been
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Figure 1. Simulation results for the modulational instability of a long laser pulse. Depicted are the transmission spectrum (top,
intensity versus w/® ) and the distribution of the laser’s photons in (x, k)-space (bottom, ckl(op versus o x/c) after the laser
pulse propagated through the plasma for 9 mm. The transmission spectrum shows large peaks separated by 0, indicating that
the modulational instability is fully developed to the point of saturation. The photon distribution displays extensive phase
mixing of the photons, most of which have already completed several closed orbits in (x, k)-space by this time. The
accumulation of photons at the ‘top’ and ‘bottom’ of such closed orbits leads to the peaks in the transmission spectrum.
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Figure 2. Simulation results for the modulational instability of a long laser pulse. Depicted are the amplitude of the
longitudinal electric field eEI(me(x)pc) (top) and the width of the laser’s spectrum dw/w, (bottom) versus propagation distance
in mm, for background electron densities of n, = 2 (black), 4 (blue), 8 (green) and 16 x 10'8 cm3 (red). It is found that both
quantities, in particular the wakefield amplitude, grow exponentially once the modulational takes off properly. The growth
time has been found to scale with 1/w 3 due to the effect of finite pulse length on the development of the modulational
instability. For the highest density, it is found that the modulational instability saturates after about 4 mm of propagation.

predicted above. Their presence indicates that the
modulational instability is well developed at the time the
snapshot was taken and saturation has already set in. This
is confirmed by the right frame of figure 1, which shows
the position and wave number of the laser pulse’s photons.
Almost all photons have shifted considerably with respect
to their original wave number k, and have completed at
least one turn along a closed orbit in (x, k)-space.
Extensive phase mixing has occurred and the spectral
broadening has mostly saturated.

Although the narrow peaks at o, = dw are just about
visible in the simulated spectra at early times, it is easier to
obtain information about dw by simply looking at the full
width of the laser spectrum before the emergence of the
(anti-)Stokes peaks at o, * l*mp. To illustrate this, both the
width of the frequency spectrum and the amplitude of the
longitudinal electrostatic field E, (the wakefield) have been
plotted versus propagation distance in figure 2 for
simulated densities of n, =2, 4, 8 and 16 x 10'8 cm™. A
careful analysis shows that the growth time of both the
spectral width and the wakefield is proportional to 1/m 3.
This is different from the usual expression of 1/w_¥2 or
l/oop2 21 but one should bear in mind that these results
were calculated for laser beams of infinite length. Using a
pulse of fixed, finite length introduces a stronger
dependence of the growth time on ®_, because the pulse
length increases relative to the plasma period for an
increase in ®_. Since the spectral width grows at a rate
equal to the wakefield amplitude, this proves that an
analysis of the spectral width after the interaction will
yield the peak wakefield amplitude reached during the
interaction. Even better results will be obtained when the
modulation of a low-intensity ‘witness’ laser pulse is
studied rather than that of the driving pulse, as there will
be much less evolution of the wakefield under the witness
pulse in that case, which renders it easier to relate the
spectral broadening back to the wakefield amplitude.
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Conclusions

We have studied the role of photon acceleration in the
modulational instability of a long laser pulse (180 fs) with
an underdense plasma. The modulational instability causes
the laser pulse envelope to be modulated on the length
scale of the laser-driven plasma wave, and it has been
predicted that the plasma wave will also periodically
modulate the laser frequency.

We have developed an analytic model for the spectral
modulations that result from a periodic acceleration/
deceleration of the laser’s photon population. This model
predicts that the fundamental spectral peak (and the
Stokes satellites, which we did not study however) will split
into two peaks with frequency ® = o, * 8w with 8(00/0)p =
koso 2(2w,?)8ny/n,, s is the thickness of the plasma slab
and gno is the plasma wave amplitude. Since the plasma
wave amplitude will grow throughout the laser pulse, each
plasma period will contribute its own pair of spectral
peaks at a different value of dw, leading to the generation
of a number of narrow peaks, separated by considerably
less than the plasma frequency.

For a maximum separation of up to 15 nm, as seen in a
recent experiment ®, we have S(D/mp = (mO/(Dp)(SMkO) =0.2,
and a gas jet of about 3 mm wide will give us a density
perturbation of én/n, = 0.016. This value is in line with
expectations for the case of a long, low-intensity laser
pulse interacting with a tenuous plasma, and confirms the
value of photon acceleration as a wakefield diagnostic.

Photon kinetic simulations show the separation of the
fundamental peak into secondary peaks, as predicted by
the theory and observed in the experiment. The
simulations don’t contain an ionisation model and don’t
exhibit an overall blueshift of the spectrum. This confirms
the notion that a shift of the spectrum as a whole is caused
by ionisation blueshift, while modulations of the spectrum
are caused by wakefield-driven photon acceleration.
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