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Introduction

The hydrodynamic description is a very common starting point 
for investigating a wide range of basic and complex physical 
phenomena  in  fluids.   In  this  macroscopic  context,  the 
behaviour  of  the  fluid  is  governed  by  the  equations  of  fluid 
mechanics  [1]  (e.g.  the  Navier-Stokes  equations).  These 
equations  give  a  wide  range  of  physical  predictions 
(hydrodynamic  modes,   etc.)  that  are  frequently  tested  and 
verified experimentally (e.g. [2]).

From  a  microscopic  standpoint,  usually  the  hydrodynamic 
regime  or  hydrodynamic  limit corresponds  to  wavenumbers 

k such that  k l f ≪1 with l f  the 'mean free path' and 
frequencies    such  that     c≪1 with  c the 
'mean  collision  time'.   These  conditions,  which  are  already 
rather qualitative for a system governed by uncorrelated binary 
collisions,  become even more indeterminate when many-body 
correlations are present because the concepts of 'mean free path' 
and  'mean  collision  time'  cease  to  have  a  clear  physical 
meaning.    Thus,  when  these  many-body  correlations  are 
present  (as  is  the  case,  for  example,  in  a  liquid  or  dense 
plasma), the rather general question of the domain of validity of 
the hydrodynamic limit is particularly challenging. The extent 
to which these correlations are present in the system depends on 
the thermodynamic parameters - the density and temperature - 
as  well  as  the  strength  and  range  of  the  (microscopic) 
interactions.   For  instance,  one  can  expect  that  the 
hydrodynamic description only applies at lengthscales that are 
greater than the range rc of the potential (i.e. k r c1 )  - 
in other words, that the domain of validity of the hydrodynamic 
limit will shrink as the range of the potential increases.

In  this  contribution,  we  investigate  when  the  hydrodynamic 
description  (rather  than  a  more  detailed  microscopic 
description)  is  applicable  for  a  physical  system.  To achieve 
this,  we consider  the  microscopic  dynamics  of  the  so-called 
Yukawa  One  Component  Plasma  (YOCP),  which  has 
interaction potential v r=q2 exp −r /r c/r  ,  where  q2  
is the strength and rc  the range of the potential. Since it is 
known  that  this  model  is  fully  characterised  by  two 
dimensionless  parameters [3],  we are able to very effectively 
explore the entire parameter space (density  n , temperature 

T ,  strength  and  range  of  the  interaction  potential)  that 
influences  the  applicability  of  the  hydrodynamic  description. 
Specifically,  these  parameters  are  the  reduced  range 

rc
*
=rc /a ,  where a=4n/3−1/3 is  (a  measure  of)  the 

average  inter-particle  spacing,  and  the  coupling  strength 
=q2

/akb T  ,  which  itself  characterises  completely  the 
degree of many body correlations present in the system for a 
given  range.   We  calculate  the  complete  (equilibrium) 
microscopic dynamics of this model – specifically, we calculate 
the so-called dynamical structure factor – and compare these to 
the dynamics predicted by the hydrodynamic (i.e. macroscopic) 
description.   

Dynamical Structure Factor (DSF)

The  space  and  time  dependent  density-density  correlation 
function  <nr , tnr' , t '

> (also  known  as  the  Van  Hove 
function) plays a privileged role in statistical physics as a bridge 
between  theory  and  experiment.   Here  nr , t is  the 
(microscopic) density of a system of N point particles

nr , t=∑
i=1

N

r−r it 

And <...> denotes the usual statistical (thermal equilibrium) 
average, which is given for the canonical ensemble as

<...>=
1
Z
∫ ...e−B H r

N
, p

N
 d rNd pN

With Z the canonical partition function.  Here B  is the 
inverse  temperature 1/kb T and H rN , pN  is  the 
Hamiltonian of the system.  Working instead with the density 
fluctuation

nr , t=nr , t −<nr , t >

The intermediate scattering function is defined as

 (1)

Where

nk , t =nk , t −<nk , t>  

is  the  density  fluctuation  in  wavevector  space,  with

nk , t =∑
i=1

N

e−ik⋅ri  t  the  spatial  Fourier  transform  of  the 

density  at  time t .   Finally  then,  the  Dynamical  Structure 
Factor S k , is  the  Fourier  transform  in  time  of  the 
intermediate scattering function

 (2)

When the system possesses spherical symmetry (as is the case 
for  the  Yukawa  model,  because  the  interaction  potential 
depends only on the distance between two particles),  the DSF 
depends only on the magnitude k of the wavevector k , 
and  is  thus  denoted  as  S k , henceforth.   The  DSF 
corresponds  experimentally  to  the  spectrum  measured  from 
light (e.g. x-ray) or neutron inelastic scattering experiments.

Computing the DSF

Determining the DSF is a case of evaluating the integral given 
in  Eq.  (2),  which  requires  calculation  of  the  intermediate 
scattering function.  This cannot generally be done analytically 
–  one  notable  counterexample  being  an  ideal  gas  of  non-
interacting particles.   Thus,  it  is  usual  to  resort  to  numerical 
methods  for  the  calculation  of  the  DSF.   Of use here  is  the 
'ergodicity assumption'  (see e.g. [4]) that allows the statistical 
average to be computed instead as a time average.   Roughly 
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S k ,=∫
−∞

∞

F k , te it dt

F k , t =
1

2 N
< nk , tn−k ,t '

>



speaking, the 'ergodicity assumption' amounts to the hypothesis 
that the dynamical system 'samples' the states in the phase space 
in time with the same frequency as given by the weighting in 
the  statistical  average.    Specifically,  when  applied  to  the 
calculation of  the intermediate scattering function,  one writes 
mathematically

F k ,t=
1

2N
lim
T∞

1
T∫0

T

nk , tt '
n−k ,t '

d t '

In this way knowledge of the dynamics of the system (i.e. the 
trajectories of the particles as given by Newton's equations for 
the  case  of  a  classical  system)  allows  one  to  calculate  a 
statistical average of a quantity of physical interest (in this case 
the intermediate scattering function).  Therefore, the problem of 
calculating the DSF reduces to solving Newton's equations for 
the  particle  trajectories,  which  can  be  done  numerically  by 
taking  advantage  of  the  long  established  techniques  that 
generally come under the umbrella term 'Molecular Dynamics' 
(MD).

Hydrodynamic Description of the DSF

From  MD simulations  then  the  'exact'  DSF for  the  Yukawa 
model can be calculated to within numerical accuracy.  It is this 
quantity  that  we  wish  to  compare  to  the  hydrodynamic 
description,  in  order  to  examine  when  the  hydrodynamic 
description  is  applicable.   This  macroscopic  description  is 
determined from the linearised hydrodynamic (Navier-Stokes) 
equations, which are (e.g. [5])

 (3)

In Eqs. (3), n and T are the equilibrium number density 
and temperature respectively, with m the particle mass.  The 
shear  and  bulk  viscosities  and  enter  into  the 
momentum  balance  equation  with  the  thermal  conductivity 
 in  the  energy  balance  equation.   One  can  express  the 

entropy  and  pressure  fluctuations  ( s r , t  and 
 pr , t  respectively)  in  terms  of  the  density  and 

temperature  fluctuations  ( nr , t and  T r , t
respectively) and subsequently solve this system of equations 
for  the density  fluctuations.   In  this way (making use of  the 
definition in Eq. (2)) one obtains the hydrodynamic expression 
for the dynamical structure factor (e.g. [5],[6])

 

(4)

In  Eq.  (4),  is  the  ratio  of  heat  capacities  ( C v/C p ),
DT=/nCp  is the thermal diffusivity, cs the adiabatic 

sound  speed,  and   the  sound  attenuation  coefficient 
defined by 

=
1
2 [ −1





nCv



4
3


nm ]
Since the entire physics  of the Yukawa model depends only on 
the coupling strength and range, so each of these four unknowns 
(  , cs ,  and DT )  appearing  in  Eq.  (4) are 
functions  of   and  rc

* only.   Indeed,  since  the  sound 

speed  and  heat  capacities  are  known  to  reasonable  accuracy 
from equation of state calculations [7], and the viscosities and 
thermal  conductivity  have  also  been  calculated  [8],[9],  the 
macroscopic  description of  Eq.  (4) is  effectively known – as 

required for our study -  as a function of k and  .  We 
note that the equation of state calculations show that ≈1
for  the  and rc

* values  of  interest  here;  therefore  the 

hydrodynamic  description  of  the  DSF  as  given  in  Eq.  (4) 
reduces to a single 'Brillouin' peak whose position in frequency 
space is given by =c sk with a height and width that scale 
as 1 /k2 and k2 respectively  .   It  is  these predictions of 
the  macroscopic  description  that  we wish  to  test  against  the 
'exact' DSF as computed with the MD simulations.

Range of Applicability of the Hydrodynamic Description

Fig.  1  shows S k , as  calculated  from  MD  plotted 
alongside Eq.  (4) for several choices of coupling strength and 
range.  

As  shown in  Fig  1.  (top  three panels)  we find  that  one  can 
always  go  to  lengthscales  sufficiently  long  (i.e.  sufficiently 
small k )  that  the  hydrodynamic description  is  valid.   We 
find  that  rather  than  requiring  conditions  on  both k and 
 ,  the  hydrodynamic  description  is  valid  providing 
kakamax ,  where kamax is  the  wavenumber  beyond 

which  the  hydrodynamic  description  breaks  down  (i.e.  no 
longer  works  well).   Below kamax ,  the  hydrodynamic 
description of S k , works very well indeed for all  - 
the  height,  width  and  position  of  the  Brillouin  peak  are  all 
predicted  accurately.   Physically,  no  condition  on   is 
required  because  the  system  dynamics  at  sufficiently  long 
lengthscales  are  always  slow  enough  for  the  macrosopic 
equations  to  be  applicable  (this  is  illustrated  in  Fig  1.  -  the 
Brillouin peak is always at small  for small k ).  As can 
also be seen in Fig 1., at k values greater than kamax the 
Brillouin peak is always located at smaller  than predicted 
by the hydrodynamic description ( =c sk ) - this is a well 
known phenomenon in real liquids (see e.g. [10]).  The manner 
in  which  the  excellent  correspondence  between  the 
hydrodynamic description and the true microscopic dynamics of 
the system breaks down is shown for the height and width of the 
peak in Fig. 2.  As seen from Fig. 2, the true height of the DSF 

Figure 1: DSF as calculated from MD (red dots) compared 
with the DSF given by the hydrodynamic description in Eq. 
(4) (black line) for three different  and rc

* values. 

Sk ,

Sk
=
−1


2 DT k2


2
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
2
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
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

 k2
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
2 ]

∂
∂ t

nr , t=−n∇⋅v r , t 

mn
∂v r , t 

∂ t
=−∇ pr , t ∇
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
3
∇ ∇⋅v r , t 

T
∂
∂ t

 s r , t =

n
∇

2
T r , t



decreases more slowly as k increases than Eq.  (4) predicts, 
and the true width of the DSF also increases more slowly.

By increasing the importance of many body correlations in the 
system (i.e.  increasing   )  for  a specific  rc

*
value,  we 

find that kamax is not in general significantly changed (not 
shown) .   This  is  perhaps a  slightly  surprising result,  as  the 
system intuitively becomes more 'collisional' as  increases, 
and  one  may  therefore  expect kamax to  increase  with 
increasing  .  On the other hand, the range rc

*
is of the 

utmost  consequence  to  the  domain  of  validity  of  the 
hydrodynamic  description  :  the  hydrodynamic  description  is 
only valid on lengthscales greater than this range.  This is most 
effectively illustrated by looking at the position of the Brillouin 
peak for a selection of rc

*
values (Fig. 3).  As can be seen in 

Fig.  3,  when  the  interaction  potential  becomes  more  long 
ranged, it is necessary to look at increasingly long lengthscales 
(small ka )  for the  hydrodynamic description to be valid.

Indeed,  in terms of  the range of  the potential  rather than the 
inter-particle spacing, we find from a fit to the MD results the 
approximate relation 

 (5)

Concluding Remarks

Yukawa potentials are frequently used in dense plasma physics 
[3].  Recently, it was shown that the use of a Yukawa potential 
to describe the effective ion-ion interaction, with a range given 
by the electron-ion screening length in the linear approximation, 
was  able  to  reproduce  well  the  results  of  ab-initio density 
functional theory (DFT) simulations [11]. Therefore, within the 
range  of  applicability  given  approximately  by  Eq.  (5),  the 
hydrodynamic  description  can  provide  an  important 
complement to DFT techniques, as no dynamical information is 
available in those simulations.
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Figure 3: Dependence of the domain of validity of the 
hydrodynamic description on the range of the potential. 
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Introduction 
 

The interaction between high-intensity lasers and solid targets is 
of key importance in fast-ignition inertial confinement fusion 
[1] and ion-acceleration [2].  Cone-guided fast-ignition uses the 
interaction between a high-intensity heater beam and the inner 
tip of a solid gold cone to generate fast-electrons which then go 
on to heat a compressed pellet of fusion fuel.  The angular 
divergence of the electron beam is critical in determining the 
flux of fast-electrons reaching the core and so their absorption 
there.  In laser-solid target experiments relevant to this fusion 
scheme the angular divergence is usually inferred from 
temperature measurements at the rear-surface or from the size 
of the ion-emitting region [3-6].  In target-normal sheath ion-
acceleration (TNSA), which has potential applications to 
cancer-therapy, a beam of ions is accelerated by a sheath 
electric field at the rear-surface.  This field has been observed in 
experiments to spread very rapidly along the target rear-surface, 
giving a large ion-emitting region [7].  
 

The validity of inferring the angular divergence of the fast-
electron beam from rear-surface measurements will be 
discussed in detail; in particular the temperature measurement 
will be shown to give a good estimate of the beam divergence 
only when the re-circulation of electrons (i.e. their reflection by 
the sheath fields at the target edges causing them to bounce 
laterally down the target) was suppressed.  The size of the ion-
spot will be shown to be a very poor way of estimating the 
divergence. 
 

Simulation results 
 

Solid density plasmas were simulated with the hybrid Vlasov 
code FIDO [8]; the Vlasov equation was solved for the fast-
electrons generated by the high-intensity laser and a fluid 
treatment used for the cold electrons which made up the target.  
The Vlasov equation was solved in 4D (x,y,p,θ) for the 
evolution of the electron distribution function in phase space.  A 
solid aluminium target was simulated, with density 6x1028m-3 
and a thickness of 10 microns.  The laser intensity was 
2x1019Wcm-2 with an absorption fraction of 0.3.  The laser spot 
was Gaussian with width 3.6 microns.  The electron beam was 
injected moving in the +y-direction.  Re-circulating currents 
could be suppressed by stretching the numerical grid in the -y 
direction, allowing the fast-electrons to escape.    

 

Fast-electron number density and background temperature 
profiles are often used to infer the width of the beam.  Figure 1 
shows that fast-electron refluxing significantly broadens both, 
but that the fast-electron number density provides a better 
estimate of the beam size (20 microns).  The temperature is 
broadened by the rapid saturation of the Ohmic heating rate, as 
illustrated by equation (1). However, when refluxing was 
suppressed the width of the temperature profile gave a good 
estimate of that of the beam. 

 

 
 Fig.1: Fast-electron number density after 1035fs with 

refluxing (top) and without refluxing (middle) after1035fs.   
Background temperature at the rear-surface (bottom). 

  

 ∂Te

∂t
∝Te

−3/2  

(1)  

 

When the fast electrons reached the rear surface of the target 
and entered the vacuum they generated a sheath electric field in 
the y-direction.  Experimentally, sheath fields are seen to move 
very rapidly along the target’s rear surface, therefore there must 
be a fast-electron current over a large area on the rear-surface.  
This has so far been explained by re-circulation leading to 
electrons present far from the injection region.    

 

The width of the sheath region, measured by the width of the 
ion-emitting region on the rear of the target, yields a very poor 
measure of the beam divergence due to the insensitivity of the 
sheath field to the number of incoming electrons.  In the 
simplest model of a sheath the product of the peak electric field  
(Ey

peak) and the sheath width (which is set by the Debye length 
of the fast-electrons λDf) must be approximately equal to the 
average energy of the incoming fast-electrons.  It is therefore 
straightforward to show that the sheath potential  (φ) is 
independent of the number density of incoming fast electrons 
(nf) and that the peak field scales as nf

1/2, as shown in equation 
(2).  This is borne out by the profiles at the rear of the target 
after 100fs, as shown in figure 2. 



 
 

 

 

 

 

 

The Ampere-Maxwell law gives the rate of growth of the sheath 
field. 

 

 

 

This can be integrated assuming nf is constant, until Ey grows so 
that it may reflect a significant number of fast-electrons.  
Therefore, in regions of the target where there are few fast-
electrons, the sheath field and potential are proportional to nf.  
This explains the fall-off of these quantities far from the beam 
in figure 2.  

 

The speed of expansion can be explained by noting that the 
insensitivity of the sheath field to nf meant that relatively low 
current densities (<1% of the maximum) generated large fields. 
Initially, the field was generated by electrons on their first pass 
through the target.  In this case the spreading of the sheath field 
along the rear-surface was due to the difference in arrival times 
for electrons with different injection angles; those injected at 
large angles to the target normal had further to go before hitting 
the rear-surface; this is illustrated in figure 3.  In this case the 
speed of lateral expansion of the sheath field (vexp), assuming 
the electrons were travelling at the speed of light and that they 
generated a sheath as soon as they arrived at the rear-surface, is 
given by equation (4). 

 

 

 

Where θ is the angle from the target normal to the position on 
the rear of the target.  Therefore the field expanded super-
luminally.  Note that this does not violate special relativity; 
information was not being transferred from the centre of the 
rear surface to the point at which the sheath had reached but 
from the injection region to this point at c.    

 
 

Fig.3: An illustration of the cause of sheath field spreading. 
At time τ1 electrons with an incident angle of 0o generate 
Ey1, some time later (τ2) those with angle θ2 generate Ey2.  
Finally those with θ3 generate Ey3. 

 

 

 

 

As a corollary, this weak dependence means that it                          
may be possible to increase the efficiency of TNSA ion 
acceleration by defocusing the beam somewhat in order to 
scatter the electrons as widely as possible in the target (provided 
their energy is not curtailed too much by the resultant drop in 
laser intensity).  

 

Conclusions 
 

Experimental measurements of the angular divergence of fast-
electron beams generated in short-pulse laser-solid target 
interactions may be misleading unless analysed carefully.  
Although the fast-electron number density was strongly peaked 
in the region of the beam, re-circulating currents significantly 
widened the temperature hot-spot on the back.  The size of the 
sheath potential on the back was weakly dependent on the size 
of the electron beam inside the target and so a measurement of 
the size of the ion-emitting region gave a very poor estimate of 
the angular divergence. The sheath field’s expansion was 
controlled by electrons on their first pass through the target and 
so could expand super-luminally.  
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Fig.2: Fast-electron number density, peak sheath field and 
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Introduction 
Of all the problems that ultra-intense laser-plasma physics is 
concerned with, the coupling of energy from the laser pulse into 
the kinetic energy of the plasma particles is perhaps the most 
important.  Attaining efficient coupling is highly important and 
even critical to a number of prospective applications.  Fast 
Igntion ICF and laser-driven ion acceleration are examples of 
such applications where coupling efficiency is either a very 
important or critical issue. 

In the work reported here, we analyzed the absorption of 30-
100fs, λ ~ 1µm, a0 >> 1 laser pulses in near-critical plasmas.  
By this we mean plasmas are relativistically transparent and 
span the density range 0.1nc < ne < a0nc, where nc is the non-
relativistic critical density.  The objective of this study is to 
understand the gross properties of these interactions – the 
propagation velocity of the pulse, the rate of energy absorption, 
and the scaling of the fast electron energy.  This parameter 
range is particularly interesting as very high absorption (up to 
70%) is possible. 

Previous Work 
The general problem of absorption in underdense plasmas has 
been the subject of a number of previous studies.  Much of this 
has mainly been concerned with plasmas that are below 0.1nc.  
In this work we have been particularly concerned with Leading 
Edge Depletion which was originally described in a number of 
papers (e.g. [1,2]) , but here we make particular reference to the 
paper by Decker and co-workers [1].  The absorption of laser 
energy via transverse expulsion of electrons is a concept that is 
described in a number of papers, see for examples.  

The purpose of this work was to re-examine these two concepts 
– Leading Edge Depletion (LED) and Transverse 
Ponderomotive Acceleration (TPA) – and to obtain basic 
analytic models for their gross properties that are good 
descriptions of what is observed in numerical simulations. Part 
of this is to determine the answer to an even more fundamental 
question – are these regimes genuinely distinct at all? 

Leading Edge Depletion Theory 
Decker et al. give the leading edge propagation velocity as, 
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in the limit of nr << nc.  The problem with this expression is that 
in the region nc < nr < a0nc one obtains a negative velocity which 
is at odds with numerical simulations.  We set out to derive a 
better analytic expression by using energy conservation 
arguments.   

In LED absorption notionally occurs at the leading edge by 
electrons overtaking the leading edge (which travels at a 
velocity less than c) and taking a momentum of a0

2mec/2 with 
them.  This means that the laser pulse must lose energy at a rate 
of, 
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And the loss of energy manifests as an erosion of the laser field 
that propagates backwards at velocity ver.  These velocities are 
related via u = vg – ver, where vg is the group velocity of the 
laser pulse.  This implies that, 
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where the laser intensity relates to a0 via I = a0
2mec2nc.  

Equating 2 and 3 yields the following expression, 
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In the limit of ne << nc on retrieves Decker’s expression by 
taking the limit of eqn. 4.  In LED the fast electron energy 
should scale as a0

2. 

Transverse Ponderomotive Acceleration Theory 
In 2D and 3D the other route for absorbing energy is transverse 
ponderomotive expulsion.  If we note that each electron 
expelled will take an energy of a0mec2 from the laser pulse then 
we can repeat the LED analysis except with, 
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, and obtain the following expression, 
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In TPA, the fast electron energy should scale as a0. 

1D PIC simulations 
1D electromagnetic PIC simulations were carried out to validate 
the theory of LED absorption in 1D.  This was done with a 
50µm plasma and with a 40fs ‘flat-topped’ laser pulse that was 
circularly polarized and had a wavelength of 1µm.  In one set of 
simulations we set a0 = 10 and varied the plasma density over 
the range 0.5-2nc and measured the leading edge propagation 
velocity.  In another set, ne was set to 0.6nc, a0 was varied, and 
the scaling of the fast electron energy was measured.  The 
results are summarized in figure 1 where we show that eqn. 4 
and the a0

2 scaling of LED are in excellent agreement with the 
simulation results. 

 

 



 

Figure 1. (a) Test of energy scaling in 1D PIC simulation, (b) 
Test of leading edge propagation velocity in 1D PIC simulation.  
Black lines correspond to LED analytic results (eqn. 4).  Red 
circles are simulation results. 

2D PIC simulations 
Next we used 2D PIC simulations using the EPOCH code to 
study 2D situations where both LED and TPA might occur.  In 
these simulations we also used a 50µm thick plasma and a ‘flat-
topped’ circularly polarized laser pulse.  The laser pulse had a 
Gaussian transverse distribution, characterized by rL. 

We can summarize the results of this investigation by looking at 
the plots shown in figures 2 and 3.   

 

Figure 2. Plot of leading edge velocity, u, from 2D PIC 
simulations (red circles and blue circles).  Both sets have a 
pulse with a0 =10 and rL = 10µm.  The solid black line 
corresponds to eqn. 4 (LED) and the dashed line corresponds to 
eqn. 6 (TPA).  The dotted line corresponds to eqn. 6 (TPA) but 
with a0√2. 

Figure 2 shows the leading edge velocity that was observed 
over a range of simulations on varying the plasma density.  In 
these two sets, a0 =10 and rL = 10µm.  Figure 2 shows that the 
leading edge velocities closely follow either one of the two 
curves, indicating that there is a LED regime that is well 
described by the analytic model and a TPA regime that is also 
well described by the analytic model.  The intensity correction 
included by the dotted line in figure 2 is put there because of 
intensity increases due to the strong filamentation of the laser 
pulse that occurs in the TPA regime.  Figure 2 also shows that 
the two regimes are distinct, i.e. one does not really observe an 
admixture of the two, except for regions where there is a 
smooth transition between the two regimes. 

 
Figure 3.  Log-log plot of the fast electron temperature against 
a0 for a set of simulations with ne = 0.5nc and rL = 10µm.  This 
shows a power law scaling of a0

1.8 which is very close to the 
LED scaling of a0

2. 

Figure 3 shows the results of one check of the fast electron 
energy scaling with a0.  At low density where we expected the 
LED regime to apply we found a scaling of a0

1.8 which is very 
close to the LED scaling of a0

2.  At high densities we observed a 
scaling of a0

1.1 which is very close to the TPA scaling of a0.  At 
an intermediate density we observed a scaling of a0

1.3-1.4, which 
lies between these two cases. 

Overall we found that the 2D PIC simulations showed the 
existence of separate LED and TPA regimes with smooth 
transitions between them.  In these distinct regimes, the gross 
properties are well predicted by the new analytic formulae that 
we have derived. 

Conclusions 
Two general ideas about how absorption occurs in near-critical 
plasma have existed for a number of years.  In this body of 
work we have critically examined both ideas and derived new 
analytic formulae to describe the gross properties that improve 
on the existing formulae.  Our simulations show that both ideas, 
Leading Edge Depletion and Transverse Ponderomotive 
Acceleration, can exist as distinct regimes and in these regimes 
the analytic formulae provide good predictions in comparison to 
the simulation results. 
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Introduction 
Collisional processes are of critical importance to short-pulse 
laser matter interaction. The absorption of incident laser energy 
is dominated by collisionless mechanisms1,2,3. However, the 
onward transport of the flux of fast moving, essentially 
collisionless, electrons and the resultant heating of the target is 
dependent on the response of the cold, resistive, background 
plasma.  

Considerable progress has been made in modelling transport 
phenomena in both long and short pulse laser plasma 
interactions using an approach to the Vlasov-Fokker-Planck 
problem based on a decomposition of the electron distribution 
function into spherical harmonics, or a similar set of basis 
functions4,5. However, for modelling the laser-plasma 
interaction region directly a direct Vlasov solver is desirable: 
unfortunately, solving the VFP problem on the discrete phase 
space grid of a direct Vlasov solver is extremely demanding, 
computationally speaking6.  

Here we briefly outline a simple approach to including 
collisional physics in the direct Vlasov solver VALIS7, based on 
the BGK (Bhatnagar, Gross and Krook) collision operator, 
which does not have the computational overheads associated 
with the VFP approach. We are able to demonstrate the efficacy 
of this approach in two key transport problems in laser plasma 
interaction: thermal conduction and electrical resistivity. 

The Bhatnagar, Gross and Krook collision operator 
Collisional effects form the right hand side of the Boltzmann 
equation but are absent from the Vlasov equation. They can be 
included in a Vlasov solver, such as VALIS, by the addition of 
an appropriate collison operator, so that for species j: 
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where C represents the collision operator: 
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and ( )
kCjt f

,
∂  represents the change in fk due to collisions 

with species k. Any collision operator should have the following 
characteristics: it must conserve mass, momentum and energy; 
it must have an H-theorem (that is to say it must asymptotically 
approach a unique equilibrium distribution in a homogenous 
plasma, the Maxwellian distribution); and it must maintain 
positive f. Here we consider and implementation of a simple 
BGK collision operator8: 
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where υjk is the collision frequency for collisions between 
species j and k , Fj is the equilibrium distribution: Maxwell-
Boltzmann in the non-relativistic limit and Maxwell-Jüttner in 
the relativistic case. 

Following the treatment devised by Mannheimer et al.9 we use 
the high and low energy collision frequencies from the NRL 
Plasma Formulary10 analytically matched so that, for example, 
the electron-ion collision frequency becomes: 
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where subscripts e and i denote electron and ion quantities 
respectively and Ene represents the electron kinetic energy. The 
value of the Coulomb log is also taken from the NRL Plasma 
Formulary.  

The BGK operator is treated implicitly so that, for electron-ion 
collisions only: 
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By taking velocity moments of Equation 6, it is clear that the 
BGK operator can be made to conserve energy, mass and 
momentum by a suitable choice of F. For the electron-ion 
collision term to have the correct conservation properties at 
each time-step we find the Fe which satisfies: 
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where m = 0, 1 or 2. Since the form of Fe is known we can 
simply calculate the density, drift speed and temperature of Fe 
iteratively. For the tests detailed here, we consider only the non-
relativistic limit, fixing γ = 1, and do not impose conservation 
of momentum for any electron-ion collisions. 

This implementation of the BGK approach has a number of 
desirable properties: it can be implemented an a fully implicit 
and conservative manner and implemented independently of the 
solution of Vlasov’s equation; it can be applied to multi-species 
systems; the impact of collisions or changes to the underlying 



physics can be easily assessed through changes to the 
calculation of the collision frequencies; and it does not rely on 
an expansion in the reciprocal of the Coulomb log.  

This is potentially a practical way of including collisional 
effects in a direct Vlasov solver like VALIS. Inclusion of the 
full Landau form of the Fokker-Planck equation in an Eulerian 
Vlasov solver can be achieved6, but at significant computational 
cost, which can make the application of such approaches 
impractical with the level of HPC resources currently available.  

 

Figure 1. Ratio of calculated electron heat flux (Q) to the 
free streaming limit (Qf) as a function of scale-length over 
electron mean free path. The solid line is the Braginskii 
(Spitzer-Harm) predicted heat flux. The dashed line is the 
computed heat flux. 

Thermal conductivity test 
We initialise the system with a tanh profile for the electron 
temperature (from 400 eV down to 100eV), stationary ions 
(Z=4) and an electron number density of 2.97x1026 m-3 so that 
there are 100 particles per Debye sphere for the 100 eV 
electrons. The computed heat flux compared to Spitzer-Harm is 
plotted in Figure 1 after 1000 hot electron plasma periods. This 
shows heat flux limiting of ~0.1. The computed heat flux is 
multi-valued when plotted in this way, the lower section of the 
dashed curve corresponds to the hot side of the temperature 
profile and exhibits thermal flux limiting. The upper section 
corresponds to the cold side of the simulation and exceeds the 
Spitzer-Harm value, given by a solid line, due to the 
contribution from hot electrons from the higher temperature 
region. These results are in qualitative and quantitative 
agreement with previous simulations based on the full Fokker-
Planck collision operator11. 

Plasma resistivity 
Short-pulse laser plasma interaction at the target surface drives 
high energy ‘hot’ electrons into the body of the target. These 
electrons can generally be treated as collisionless, but they draw 
a return current of slow-moving collisional electrons12, which 
are responsible in large part for heating the target as well as 
influencing the development of magnetic fields, which may in 
turn collimate the hot electron beam13. Therefore, it is important 
that any transport model intended for application to problems in 
short-pulse laser produced plasmas be able to reproduce well 
understood phenomena such as Spitzer resistivity. 

We adopt a 1D1P system (one dimension in space and one in 
momentum) of mobile electrons and immobile protons 2nm in 
length and periodic in x, with initial electron and ion 
temperatures of 100eV and with a momentum extent equivalent 
to ±20vte, where vte is the electron thermal velocity. A relatively 
coarse phase space resolution of 8 cells in x by 64 cells in u is 
utilised throughout. We choose an electron number density of 
1029 m-3 and apply a fixed external electric field of between 107 
and 109 Vm-1, while disabling the code’s Maxwell field solver. 

The average current in x verses time can then be compared with 
the expected value: 
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where, considering only electron-ion collisions14, 15: 
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Here αc is the classical transport coefficient calculated in Ref. 
15 from the numerical solution of the Fokker-Planck equation 
and all quantities are given in SI units. 

 

Figure 2. Comparison of Spitzer currents (dashed lines) 
with those calculated using VALIS with a BGK collision 
operator (solid lines) for external fields of: 107Vm-1 (blue); 
5x107Vm-1 (cyan); 108Vm-1 (green); 5x108Vm-1 (yellow); and 
109Vm-1 (red), for the case of electron-ion collisions only. 
The gradient of the lines is a result of Ohmic heating. 

 

Figure 3. Comparison of Spitzer currents (squares) with 
those calculated using VALIS with a BGK collision operator 
(diamonds) after 50fs for a range of applied fields and 
including only electron-ion collisions.  



 

Figure 4. Comparison of Spitzer currents (dashed lines) 
with those calculated using VALIS with a BGK collision 
operator (solid lines) for external fields of: 107Vm-1 (blue); 
5x107Vm-1 (cyan); 108Vm-1 (green); 5x108Vm-1 (yellow); and 
109Vm-1 (red), for the case of both electron-electron and 
electron-ion collisions.  

 
Figure 5. Comparison of Spitzer currents (squares) with 
those calculated using VALIS with a BGK collision operator 
(diamonds) after 50fs for a range of applied fields and 
including both electron-electron and electron-ion collisions.  

Figures 2 and 3 summarise results for a range of external fields. 
VALIS, with the BGK collision operator is able to reproduce 
the expected Spitzer current across the range of fields. When 
the effect of electron-electron collisions (for which one must 
add an additional pre-factor of ~16/3π to equation 9) are 
included, the results are equally encouraging – as shown in 
Figures 4 and 5. Broadly similar results have been achieved at 
number densities of 1028 and 1029 m-3 over the range of fields. 
As one would expect, results in the low density, high field case 
display a higher drift velocity and demonstrate considerably 
more Ohmic heating, compared to the low field, high density 
case, where the deviation from the initial Maxwellian is much 
less pronounced, see Figure 6. 

Conclusions 
We have outlined a simple BGK collision operator for the 
Eulerian Vlasov solver VALIS. This implementation can be 
applied to multi-species systems including both inter and intra-
species collisions and is formulated so that particle number, 
energy and momentum are conserved. Furthermore, the fully 
implicit implementation allows the method to be applied 
independently of the scheme used to solve Vlasov’s 
equation7,16.  

Two simple 1D tests demonstrate the potential of this approach 
for modelling problems in laser-plasma interaction, making this  

approach a practical way of including collisional effects in a 
direct Vlasov solver like VALIS and allowing the self-
consistent modelling of absorption and transport without the 
need to solve for the full Landau form of the Fokker-Planck 
equation. Ongoing work will extend this approach to higher 
dimensions, relativistic problems and realistic systems. 

 

 

Figure 6. Initial (dashed line) and final, i.e. after 50fs, (solid 
line) velocity distribution functions for: an electron number 
density of 1030m-3 and applied field of 107Vm-1 (top); an 
electron number density of 1030m-3 and applied field of 
107Vm-1 (bottom). The effect of Ohmic heating is clear in the 
low-density, high-field case. 
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Introduction 
Plasma-based electron acceleration [1] holds the promise to 
deliver electrons at multi-GeV energies while requiring only a 
short acceleration distance. This was demonstrated most vividly 
when the energy of a 42 GeV electron beam was doubled in a 
0.85 m long plasma in a beam-driven wakefield experiment [2]. 
While operating at lower energies, laser-driven wakefield 
acceleration has the advantage of producing electron bunches 
with an energy spread below 5% [3–5]. To increase the output 
energy of a plasma accelerator, one has to decrease the density 
of the background plasma and increase the acceleration length. 
In the case of laser-driven acceleration, this introduces the 
complication of laser pulse divergence. Without special 
measures, the length over which the laser pulse will stay 
spatially confined and capable of driving a decent wakefield is 
much shorter than the required acceleration length. An often 
used technique to overcome laser pulse divergence and increase 
the laser-plasma interaction length is pulse guiding by means of 
a preformed plasma channel. In such a channel, the plasma 
density is lowest along the channel’s central axis, so the index 
of refraction is highest there and the laser pulse is guided as it 
would be in a glass fiber. In [4], a plasma channel was created 
by line-focusing a secondary laser pulse onto a gas jet; this 
channel was then used to guide the primary laser pulse. 
However, for longer acceleration lengths and lower plasma 
densities, plasma channels formed by hydrogen-filled capillary 
discharge waveguides [6, 7] are much more suitable. Using a 40 
TW laser pulse guided by such a channel, electron bunches 
have been accelerated to up to 1 GeV with 5% energy spread 
[8]. 

Review of previous experimental results 
Recently, laser wakefield acceleration in a hydrogen-filled 
capillary discharge waveguide was studied experimentally on 
the Astra Ti:sapphire laser at the Rutherford Appleton 
Laboratory [9]. During this experiment, plasma electron 
trapping and acceleration was observed. The accelerated 
electron bunches had a mean energy of up to 200 MeV and 
around 15 MeV spread. In addition, it was found that the 
probability of electron trapping was strongly dependent on the 
delay between the onset of the discharge current and the arrival 
of the laser pulse. Electron acceleration was only observed 
during a narrow delay interval, when the discharge current was 
already starting to switch off and laser energy transmission was 
past its peak. Interferometric and Raman spectroscopic 
measurements confirmed that electron trapping coincided with a 
decrease of both the degree to which the hydrogen was ionised 
and the depth of the plasma channel, i.e. with a general decrease 
in channel quality. No electrons were observed when the 
discharge current, laser energy transmission, channel depth and 
degree of hydrogen ionisation were at their peak, i.e. when the 
channel quality was optimal. 

Simulation results 
From these results, it is clear that electron injection in a plasma 
channel depends sensitively on the state of the plasma channel. 
In [9], it was suggested that the degree of ionisation may have a 
significant effect on electron trapping: electrons that are “born” 
during the passage of the laser will have a different velocity 
than free electrons that were already there, and may therefore be 
more eligible for trapping by the wakefield. However, other 
plasma parameters evolve simultaneously with the degree of 
ionisation, e.g. the overall plasma density and the transverse 
profile of the plasma channel. While it is not possible to isolate 
the effect of a change in each parameter in the experiments, it is 
certainly possible to do so in computer simulations. To 
investigate the influence of the degree of ionisation, as well as 
the background plasma density, channel profile and laser pulse 
intensity, on electron injection, we have performed a series of 
two-dimensional (2-D) numerical simulations using the particle-
in-cell (PIC) code OSIRIS [10]. This code implements the full 
relativistic PIC algorithms, and also includes routines to model 
ionisation of neutral gases (H, He, Li, Ar). A series of 
simulations has been performed, in which the degree of 
ionisation (fully ionised, 1/3 neutral gas, 1/2 neutral gas), laser 
intensity (0.8 < a0 < 2.0), plasma background density (n0 = (1 − 
1.5) × 1019 cm−3) and channel profile (n(r)/n0 = 1 + a(r/r0)2, 
where 0 < a < 0.033) were varied. The results of these 
simulations can be summarised as follows: 

• Increasing the laser intensity leads to a larger 
wakefield amplitude, causing the injection of more 
electrons which are subsequently accelerated to higher 
energies. These results are displayed in Figure 1. 

• Increasing the plasma density by only 50% leads to a 
significant increase in both the number of trapped 
electrons and their energy after a fixed acceleration 
distance. If the acceleration could be continued for the 
entire dephasing length the final energy would be higher 
for lower densities, but in the experimental configuration 
used in [9] this is not realistic because of laser pulse 
depletion and finite channel length. These results are 
displayed in Figures 1 and 2. 

• Decreasing the channel depth from 0.33 to 0.165 
leads to only a moderate widening of the laser spot size 
without loss of guiding even for intensities as low as a0 = 
0.8. Removing the channel altogether leads to pulse 
divergence, lower wakefield amplitude and a decline in 
particle injection for the lowest intensities (a0 = 0.8). For 
a0 > 1.0, the laser pulse is sufficiently intense to guide 
itself via the process of relativistic self-focusing, and 
removing the channel has a much smaller impact. These 
results are displayed in Figures 2 and 3. 

• Changing the fraction of neutral gas from 0 to 1/3 or 
1/2 has a small effect on the transverse profile of the laser 



pulse, but no significant effect on either the shape of the 
wakefield or the electron injection and acceleration 
processes. These results are displayed in Figure 4. 

Discussion and conclusions 
Based on the above simulation results, the experimental results 
of [9] can be explained by the following mechanism. When the 
discharge current is at its peak and the plasma channel is fully 
formed, the on-axis plasma density of (0.5 − 1.0) × 1019 cm−3 is 
slightly too low to trigger electron injection for the laser pulse 
intensity used (a0 ~ 0.6). At later times, when the discharge 
current decreases, the plasma channel starts to “cave in”, i.e. the 
on-axis density increases while the channel depth decreases. 
This can actually be concluded from Fig. 2 of [9], which shows 
an increase in the total density of available electrons (free and 
from re-ionisation), as well as a gradual flattening of the 
transverse density profile. Initially, the rising on-axis density 
leads to a sharp enhancement of electron injection, as well as 
the final electron energy. Following that, the flattening density 
profile leads to a loss of laser pulse confinement, meaning that 
the laser pulse is no longer able to efficiently generate a 
wakefield and electron injection stops altogether. We thus find 
that efficient electron injection and acceleration only happens 
for a rather special combination of circumstances, which 
explains the narrow window in which accelerated electrons 
were observed in the experiment. 

 

 
Figure 1. Electron trapping in a laser-driven wakefield, versus 
laser intensity. Laser amplitude a0 is 1.19 (top left), 1.68 (top 
right), 2.0 (bottom left), 2.5 (bottom right), all other parameters 
equal. Laser spot diameter is 10 micron, wave length is 800 nm, 
ω0/ωp = 13.2, pulse duration is 50 fs. An increased laser 
intensity leads to enhanced electron trapping and acceleration. 

 

 
Figure 2. Top left: electron trapping for the same parameters as 
the top right frame of figure 1, except that ω0/ωp = 10.56, i.e. 
higher plasma density, leading to enhanced trapping and 
acceleration. Other frames: electron trapping versus channel 
depth for a0 = 1.19 and ω0/ωp = 10.56. Channel depth is 0.33 
(top right), 0.165 (bottom left) or 0 (bottom right). Reducing the 
channel depth leads to a decrease in electron energy, but self-
focusing ensures that some electrons are trapped and 
accelerated even in the absence of a channel.  

 
Figure 3. Electron trapping versus channel depth, for a0 = 0.8. 
Removal of the channel inhibits wave breaking of the 
wakefield, leading to trapping of electron bunches at every 
wakefield period rather than a single bunch directly behind the 
laser pulse. This also has a detrimental effect on the energy 
spread. 

In a separate simulation using a fully ionised plasma with a 
rather high temperature of 10 keV [11], it was found that the 
propagation mode of the laser pulse was different from 
propagation in a cold plasma, with the pulse in the cold plasma 
having two side lobes containing a significant fraction of the 
energy, while the pulse in the hot plasma had all its energy 
confined to one central lobe. Also, enhanced electron trapping 
was observed for the hot plasma. It was then suggested that re-
ionisation of a partially recombined plasma by a passing laser 
pulse would lead to a fraction of electrons having a much higher 
temperature than the previously present free electrons, which 
would once again lead to better laser pulse confinement and 
enhanced electron trapping. However, while the simulations 
using a mixture of plasma and neutral gas did show a slight 
change to the transverse pulse profile on several occasions, this 
was not expressed in either a significantly higher electron 



temperature or enhanced electron trapping. We therefore 
conclude that the enhanced electron trapping observed in the 
hot plasma entirely results from the artificially high plasma 
temperature. Indeed, it is well-known that wave breaking in 
warm plasma happens at a lower field amplitude than in cold 
plasma [12], while a small fraction of “thermal” electrons in a 
cold bulk plasma will still considerably lower the field 
threshold for electron trapping even if the wave itself does not 
break [13]. Combining Akhiezer and Polovin’s equations for 
cold, relativistic plasma waves [14] and Ruth and Chao’s 
Hamiltonian approach to quasi-static electron dynamics [13], 
we find the following expression for the wakefield amplitude 
necessary to trap an electron with initial forward speed vt: 

10.  R.A. Fonseca, L.O. Silva, R.G. Hemker, et al., Lect. Not. 
Comp. Sci. 2331, 342 (2002). 

11. C. Kamperidis, private communication. 
12.  R. M. G. M. Trines and P. A. Norreys, Phys. Plasmas 13, 

123102 (2006). 
13.  R. D. Ruth and A. W. Chao, AIP Conf. Proc. 91, 94 (1982). 
14.  A. I. Akhiezer and R. V. Polovin, Zh. Exp. Teor. Fiz. 30, 

915 (1956) [Sov. Phys. JETP 3, 696 (1956)]. 
 

 
Here, Ewb denotes the cold, relativistic wave-breaking field [14]. 
For γφ = 18 and “thermal” electron energies of 1, 10, 100 and 
1000 eV, we find that Et/Ewb equals 0.87, 0.79, 0.66 and 0.53, 
respectively. This confirms that one can enhance electron 
trapping by increasing the plasma density and/or temperature, 
while changing the degree of ionisation does not really make an 
impact because the effect of that parameter on either density or 
temperature is simply too limited. 

 
Figure 4. Energy spectrum of plasma electrons produced by 
ionisation processes in a partially ionized plasma: neutral 
fraction is 1/3 (left) or 1/2 (right). Other parameters are similar 
to the simulation depicted in the top right corner of Figure 1. 
Naturally the absolute number of electrons produced by 
ionisation increases with the fraction of neutrals, but their 
relative energy spectrum does not change much with the 
fraction of neutrals. The fraction of neutrals did not appear to 
produce qualitative changes in the energy spectrum of pre-
existing electrons either. 
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A 2D3P parallel object-oriented Vlasov-Fokker-Planck code 
that relies on the expansion of the electron distribution 
function to spherical harmonics has been developed, in order 
to study non-local electron transport for Shock Ignition. The 
code makes use of a rigorous formalism for the collisions 
between electrons, which derives from the Rosenbluth 
potentials and conserves energy and number. This code makes 
it possible to accurately model the kinetic as well as the 
hydrodynamic behaviour of the plasma and is particularly 
efficient for collisional plasmas. For Shock Ignition the 
electron temperatures range from more than 100keV to 10eV 
while densities range from less than critical to greater than 
solid.  Shock Ignition is therefore an excellent candidate for 
this VFP code, because the target is sufficiently collisional to 
allow for extremely efficient modelling. 
 
Introduction 

The ability of hot electrons to transfer energy over large 
distances arises from the most fundamental properties of 
ionized matter and leads to complex and unpredictable 
phenomena. Understanding and controlling non-local electron 
transport is crucial for Shock Ignition [1-2], which aims to 
increase the energy gain for Inertial Confinement Fusion (ICF) 
[3] without major modifications to conventional ICF designs.  

In Shock Ignition, hot electrons generated near the critical 
surface, due to a spike in the drive laser pulse, need to distribute 
the energy around the compressed pellet so as to launch a 
spherically convergent shock. The transport of this large 
population of hot electrons through and around the dense 
plasma is associated with the generation of strong 
electromagnetic fields, which in turn are determined by the 
plasma conductivity. In this regime the Spitzer conductivity 
does not apply and the correct kinetic description of the total 
electron distribution must be considered.  

One can describe the evolution of the electron distribution 
function with the Vlasov-Fokker-Planck equation thereby 
retaining the kinetic treatment of the entire electron population: 
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where f (p,r,t)  is the electron distribution function and the 
terms  δf δt( ei)  and δf δt( ee)  describe the contributions of 
electron-ion and electron-electron collisions respectively. The 
Fokker-Planck (FP) equation resembles a Taylor expansion for 
small-angle deflections in velocity space and assumes linear 
addition of the effects of all particles within a Debye length 
(λD). Because of this cutoff and the neglect of high-order terms 
the FP description implies a large number of particles (ND) 
within a Debye sphere and fails for very high densities and very 
low temperatures. There is, nevertheless, a large volume of 
plasma between the laser-plasma interface and the ultra-high 
density region, which is described well by the FP equation. In 
the plasma corona there are more than 100,000 electrons per 
Debye sphere, while in the high-density plasma their number 
drops to 10-100, e.g. for T=300eV and n=1023/cc ND~30.  

The main difficulty in solving the Vlasov equation numerically 
comes about from the 6D nature of the electron distribution 

function, with three dimensions used for real space and three 
dimensions for phasespace, so that even if a modest number of 
cells is used per dimension the grid ends up being prohibitively 
large. Instead, one can expand the distribution function in 
phasespace to spherical harmonics and express it using the 
complex amplitudes of the expansion and a 1D grid for the 
magnitude of momentum [4].  

 

f (p,r,t) = f l
m (p,

m=− l

l

∑
l = 0

∞

∑ r, t)Pl
m (cosϑ )eimϕ

0 ≤ ϑ = arccos(px p ) < π , 0 ≤ ϕ = arctan2(pz, py ) + π < 2π

 

where  f l
−m = [ f l

m ]* the amplitudes of the expansion and  Pl  the 
associated Legendre functions. The spherical harmonics are 
characterized by two indices  l , where large    correspond 
to highly directional/anisotropic harmonics (Fig. 1).  

m

,m l ,m

The main advantage of this approach is that angular scattering 
due to collisions between electrons and ions tends to isotropize 
the distribution function by rapidly damping the high-order 
harmonics. It is therefore possible to capture the physics using 
only few terms in the expansion, and reduce the problem size, 
compared to a regular Vlasov code, by a factor in excess of 
1,000. Other advantages of this expansion are that it makes it 
easier to stretch the phasespace, that it allows one to resolve the 
magnitude of momentum much more finely than the angle, and 
that it makes it easier to include collisions between electrons. 
On the other hand, its main vulnerability, the singularity at the 
origin p = 0, can be effectively addressed in the numerical 
scheme. 

 
Figure 1: The first ten spherical harmonics 

 
Numerical Grid 
The expansion to spherical harmonics results in an irregular 
grid in phasespace (Fig. 2a), with the smallest cell at the origin. 
Numerical stability—assuming an explicit scheme—requires 
that a sufficiently small time-step and/or a high-order 
integration method be used to resolve the highest order 
harmonic at the smallest cell (e.g. Fig. 2b-2c). Alternatively one 
can restrict the number of harmonics resolved for low-
momentum cells (Fig. 2d). This makes the code stable even for 
relatively large time-steps, but can lead to some artificial noise. 
At low-momentum cells, even a very small amount of 
collisionality damps this artificial noise immediately. 



 
Figure 2: (a) First three |p|-cells, (b)-(c) keeping all   for all 

|p|-cells, (d) keeping only low    for low |p|-cells. 
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Parallelization is achieved by decomposing the computational 
domain in real space, which is represented in a Cartesian grid. 

 
2D3P Vlasov code 
The following normalizations are adopted to model the Vlasov-
Maxwell set of equations: 

t → ω pt r → kpr p → p /(mec) n → n /np qe → −1

f → c 3 f /np {E or B} → e{E or B}/(mecω p )
 

where the subscript “p” indicates the maximum initial plasma 
density. The full 3D electromagnetic fields along with spatial 
advection in 2D (x,y) have been implemented in an explicit 
scheme following Ref. [4]. The object-oriented design allows 
for interchangeability of numerical operators, which has made it 
possible to incorporate a number of numerical methods and 
compare their performance in terms of speed, accuracy and 
stability. The code has been tested for standard plasma physics 
problems, e.g. the (collisionless) two-stream instability and 
(collisionless) plasma expansion. The evolution of these 
phenomena is modeled well up to a point, after which more 
harmonics have to be added to accurately describe the physics. 
Once collisions are added the need to continually add high order 
harmonics disappears. For collisionless plasmas the 
applicability of the expansion to spherical harmonics is limited 
to cases with slow spatial variation and weak electric field.  
A laser source is mocked by substituting part of the distribution 
function with a new distribution function with a temperature 
determined by the characteristics of the laser. The code can 
generate output that includes the fields, the moments of the 
distribution function and allows for the conversion of the entire 
electron distribution function to a Cartesian grid so that it can 
be displayed using standard visualization software. Periodic and 
reflecting boundaries have been implemented. 
 
Electron-ion collisions 
Collisions involve predominantly low-energy particles. We 
assume that relativistic effects can be ignored in the collision 
operators and use the standard non-relativistic Fokker-Planck 
formalism in Ref. [5]. The expression for the evolution of the 
amplitude of each harmonic    due to collisions between 
electrons and ions becomes: 
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 with Y   and = 4π Z ′ Z e2( )2
lnΛ /m2

Yei ≡ Y (Z =1,m = me ). Angular scattering leads to damping of 
each    with a rate proportional to   f l

m l (l +1) /2 . That is, the more 

anisotropic/directional a harmonic is the faster it decays, as 
angular scattering tends to smooth out the shape of the 
distribution function. This makes it possible to truncate the 
expansion keeping only few harmonics for collisional plasmas. 
Additionally, because the collision-time scales with the cube of 
the velocity, even fewer terms are needed in the low-momentum 
cells. This relaxes the restrictions on the time-step significantly. 
To derive a characteristic time for angular scattering we use the 
expression for the RMS velocity m υ 2 = 3kT  to obtain 

τ e = 3.44 ×105 ×
(Te[eV ])3 / 2

n[cm−3]× ln Λ
sec . The Coulomb Logarithm in 

the code is calculated using the expressions in the NRL Plasma 
Formulary. 
 
Electron-electron collisions 
The Fokker-Planck equation for any two species can be written 
as in Ref. [5]: 
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where  is the distribution function and M is the mass of the 
scatterer and  (the Rosenbluth potentials [6]) are integral 
functions for . This equation can be linearized by assuming 
that the anisotropic part of the distributions F

F
 H,G
F

, f  is a 
perturbation to the isotropic part: F = F0

0 + Fa, f = f0
0 + fa . This 

yields a nonlinear equation for the isotropic part and a linear 
equation for the anisotropic part of the distribution. The full 
derivation of the expressions for any two species will be 
presented elsewhere. 
For collisions between electrons, where F ≡ f , the nonlinear 
equation for the isotropic part of the distribution can be written: 
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This formulation allows developing a numerical scheme that 
conserves energy and number of electrons. For velocities on the 
order of kT /m  or larger any regular expression for the 
integrals above suffices. For υ << kT /m  the second and third 
terms in the equation for G vanish up to O(υ 5), and the Taylor-
expanded form of  must be used. This ensures that  
relaxes to a Maxwellian. An explicit scheme can be used for 
this nonlinear equation. The time-step for this integration can be 
a fraction of the time-step for the Vlasov part of the code, but 
since it involves only one harmonic  and only a few simple 
calculations it does not affect the overall performance of the 
code. 

f0
0 f0
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To simplify the expression for high order collisions we define 
the integrals: 
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The equation for high-order harmonics becomes: 
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This is a linear equation for   with the constants  f l
m Ci  given 

in the Appendix. 
(l )

f0
0(t + Δt) , which has been calculated from 

the nonlinear equation above, can be used to integrate implicitly 



for   . The first two lines in this equation yield the scattering 
of    due to the Rosenbluth potentials calculated from . 
This includes an “angular scattering” term   

f l
m
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The last two lines can be seen as the effect that  has on the 
Rosenbluth potentials calculated from   . We note that while 
the “scattering term” is of order  , all other terms are of 
order  and they may be neglected for   .  
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Benchmark 
In order to study Shock Ignition the collision modules have 
been attached to the Vlasov code above. To test their accuracy 
we calculated the Spitzer heat conduction: 
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where δT ,ε  are given in Ref. [7] and = Z /(ων ei pτ e ) . This 
includes the effects of both electron-ion and electron-electron 
collisions. We simulated a plasma with density n=1023/cc and a 
sinusoidal temperature profile with Tmin =300eV and 
Tmax=323eV. Spitzer heat conduction was recovered with error 
less than 0.2% throughout the simulation box (with length 1000 
mean free paths). If the Rosenbluth potentials calculated from 

 are neglected the error increases to 4%. m

1
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Appendix 
Coefficients in the linearized Fokker-Planck: 
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Introduction 
High-power and high-energy laser sciences open the way to 
create and study warm dense matter (WDM) in a controlled 
laboratory environment. Characterized by near solid density and 
temperature of a few electronvolts, WDM contains the states 
between condensed matter physics and the ideal plasma regime. 
At these conditions, one has to describes matter in a highly 
correlated state that is also governed by electron degeneracy 
and bound states. Therefore, WDM still poses many challenges 
for both theoretical and experimental studies. From the 
theoretical point of view, the occurrence of strongly coupled 
ions prohibits the use of well-know perturbation methods 
developed for ideal plasmas whereas the degenerate electrons 
require a fully quantum-mechanical description.   

WDM research is also driven by the aim to achieve energy by 
means of inertial confinement fusion [1, 2], where it occurs in 
the converters and as a transient state in the core. In addition, 
the properties of WDM are required to develop a better 
understanding of astrophysical objects as it naturally occurs in 
the interior of giant planets and in the outer layers of old stars 
such as white and brown dwarfs or neutron stars [3,4]. During 
the last decade WDM can be created in a rapidly increasing 
number of powerful laser facilities worldwide. First 
experiments on different materials, e.g., Be, Li, CH and LiH 
[5,6,7,8], have demonstrated that high energy density matter has 
very interesting properties.  

Besides generation, the diagnostics of WDM poses a severe 
challenge. Due to the high particle density, energetic particle 
beams or x-rays are required to penetrate the system. The 
scattering of x-rays has been shown to reflect the microscopic 
structure as well as being able to determine the basic plasma 
parameters like electron density, ion charge and temperature 
[9]. The application of x-ray scattering as a diagnostic method 
however relies on theoretical models for the structure of the 
material under investigation since the plasma parameters are 
deduces as a fitting parameter that allow to match the scattered 
signal with the theoretical description. 

For composite materials like LiH or CH multiple components 
must be included in the description of WDM. The mutual 
interplay between the different highly correlated ions 
constitutes additional problems for a consistent theoretical 
description of the x-ray scattering signal. In this contribution, 
we present a theoretical model to describe the elastic Rayleigh 
peak in a multi-component system. The structural information 
needed are obtained by a quasi-classical approach that uses the 
hypernetted chain (HNC) equations which can be extended to 
treat multiple ion species [11,12]. For classical ion-systems, 
HNC has been proven to describe strong coupling effects very 
well [10]. The degenerate electrons in WDM can only be 
incorporated in an approximate way: here, we use a linearly 
screened Coulomb potential for the ionic interactions which is 
screened by a Thomas-Fermi like screening length. 
Nevertheless, this approach provides an efficient method to 
analyse experimental data. In contrast, full quantum simulations 
such as density function molecular dynamics (DFT-MD) [12] 
are capable to fully describe a complex WDM system, i.e., 
strongly coupled ions combined with degenerate electrons. 

However, such a treatment requires a high numerical effort and 
its applicability as an experimental analysis tool is thus very 
limited. We mainly use it to benchmark the classical HNC 
calculations and to determine charge states and inter-ionic 
potentials [12]. 

Theoretical description of the scattering signal 
The spectrum of the scattered radiation per solid angle dΩ and 
per frequency interval dω is directly proportional to the 
microscopic structure of the electrons. In a many particle 
system this is expressed by the total dynamic electronic 
structure factor  

  (1) 

Here, k and ω denote the momentum and the energy change of 
the scattered photon, respectively. The structure factor for 
partially ionised matter, which is the Fourier transform of the 
correlation function of electron density fluctuations, can be 
decomposed with respect to electron fluctuations due to the ions 
and the free gas response (neglecting core excitations) [13,14]  

(2)    

The first contribution dominates the low frequency domain of 
the x-ray Thomson scattering signal and is strongly modulated 
by the strongly correlated ions. Here, electrons bound to the 
nucleus, characterised by the atomic/ionic form factor f(k), and 
the electrons in the screening cloud, described by q(k), 
contribute to the scattering of the probe beam. The second part 
of Eq. (2) describes the scattering due to the free electrons 
where Z denotes the number of free electrons per atom. This 
part describes the large frequency regime where the Compton 
shifted electron features as well as collective excitations 
(plasmons) can be observed. Effects of internal excitations and 
ionisation induced by the probe beam can be neglected in the 
low-Z materials considered here.  

For the theoretical description of x-ray Thomson scattering, the 
microscopic structure expressed by the different structure 
factors has to be determined. The large frequency electron 
feature corresponds to the electron-electron structure factor of 
free electrons that is directly related to the correlation function 
of the density fluctuation by the fluctuation dissipation theorem 
[15]. In WDM, the electrons are degenerate and mostly weakly 
coupled. Thus, the random phase approximation (RPA) is an 
accurate description which can be improved by inclusion of 
electron-ion collisions (see e.g. Ref. [16]).  

The ion feature, that describes the electrons co-moving with the 
ions, is directly related to the ion-ion structure factor describing 
the spatial arrangement and the thermal motions of the ions. 
Due to the finite bandwidth of the x-ray probe beam as well as 
the finite resolution of the detector, this quantity cannot be 
resolved in experiments with laser-driven sources. Thus, it is 
sufficient to use the frequency-integrated or static description 

 for the ionic correlations. Here, the 

static structure factor is calculated using the HNC approach. As 
effective interaction potential between the ions, a Coulomb 
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potential linearly screened by the electrons is applied. This 
model yields similar results as ab initio simulations [12]. The 
atomic form factor of ions in plasmas can be approximated very 
well by the one for isolated atoms [17]. For light elements like 
beryllium where only 1s or 2s electrons occur, it is sufficient to 
use hydrogen-like wave function with an effective core charge 
[18]. The screening function q(k) that specifies the (free) 
valence electrons surrounding the ions, can be approximated 
within the linear response theory, that is by 

, where is the inverse electron 

screening length [19].  

Recent experiments were performed on systems with more than 
one ion species [7,8]. This raises the question how the mutual 
correlations within the ion system affect the scattering process. 
We generalised Eq. (2) for systems with an arbitrary number of 
ion species using a derivation similar to the original Chihara 
approach for single ion species which splits the electron density 
into bound and free contributions [13,14]. The result for the 
elastic ion feature WR (k), that is the Rayleigh peak, can be 
summarised as  

. (3) 

Here, the summation runs over the different ion species α and β 
with the corresponding ion densities nα. ni denotes the total ion 
density in the system. Moreover, the partial ion-ion structure 
factors need now to be considered. The HNC approach, which 
can be applied to systems with multiple ion species [11], 
naturally describes the mutual correlations between the different 
ion species. Similarly, ab initio calculation like DFT-MD can 
be used for systems with more than one ion species. However, 
the already high computational demand strongly increases here 
with the number of species. The determination of the atomic or 
ionic form factors as well as the screening functions for the 
various ion species can be done in a similar fashion as for 
simple one-component systems.  

Results and Discussion 
Figure 1 presents the ionic structure as well as the weight of the 
Rayleigh peak for a dense CH plasma. At the temperature 
considered, the ionisation state of the carbon ions is Z = 2 
whereas hydrogen is fully ionised. In the lower panel of the 
figure, the partial structure factors are shown. Under these 
plasma conditions, the higher charged carbon ions exhibit a 
more distinct structure than the protons or the cross term. In 
fact, the protons are only moderately coupled with a classical 
coupling parameter of  Γ = 1.3. They can be nearly described as 
a uniform background as demonstrated by the almost constant 
structure factor that is typical for a weakly coupled system. 
However, strongly coupled ion species can imprint their 
structure on the other ion species. Moreover, the mutual 
correlations in the multi-component system lead to an additional 
screening due to the other species that is self-consistently 
included within the HNC equations. Note, that the partial 
structure factor SCH(k) presents the typical characteristics of the 
cross terms where unity is not added in the definition [20] and 
negative values appear for small k (the long-range limit is zero). 
The total structure factor is however positive definite. 

The upper panel of Fig. 1 shows the elastic ion feature (strength 
of the Rayleigh peak) for CH given by Eq. (3). The required 
form factor for carbon is taken for isolated double charged 
carbon [18]. Due to the fact that hydrogen is fully ionised, only 
the screening function and no atomic form factor has to be 
considered. This quantity is calculated in linear response as 
defined above (however, different screening clouds for carbon 
ions and protons are considered). The resulting weight of the 
Rayleigh peak is shown as a solid red line in Fig. 1. 
Furthermore, the different contributions related to the different 

 
Fig.  1: The structure of a CH plasma with an ion density of 
nC = nH = 5·1022 cm-3, a temperature of T = 8 eV and ZH = 1 
and ZC = 2. The upper panel shows the weight of the 
Rayleigh peak (solid line) and its three contributions due to 
variations of carbon ions and protons (dashed lines). The 
lower panel shows the partial structure factors for CH.  

 

combinations of C and H ions are plotted in the figure. This 
comparison makes it clearly visible that the elastic ion peak is 
mainly given by the scattering on the C2+ ions. For small k 
values the combination of all quantities are relevant whereas for 
larger distance, only the form factor of the carbon ions 
characterises the ion peak. Thus, forward scattering, which 
highlights the small k regime, is more sensitive to multi-
component effects described here.  

As a next example, we compare the strength of the elastic 
scattering for pure carbon, CH and a CH2 with a constant 
carbon density to study the influence of the protons in the 
systems. In Fig. 2, the carbon structure factors are presented for  

 

 

Fig. 2: Static carbon-carbon structure factors for warm 
dense carbon, CH and CH2 calculated with the HNC 
method. The carbon density of nC = 5·1022 cm-3, the 
temperature of T = 8eV and a charge state of ZC = 2 are fixed 
for all systems. For the calculation of CH and CH2, fully 
ionised hydrogen, i.e. ZH=1, with densities of nH = 5·1022 cm-3 

and nH = 1023 cm-3 is applied, respectively.  



 
Fig. 3: Comparison of the weight of the Rayleigh peak for 
warm dense carbon, CH and CH2. The plasma conditions 
are the same as in Fig. 2.   

 
 
the different cases using one and two-component HNC with a 
screened Coulomb interactions, respectively. The pure carbon 
plasma shows the most pronounced structure. With the increase 
of proton density, the structure factor rises for small k values. 
This is due to the fact that the protons in the system contribute 
to further screening of the carbon-carbon interactions and, thus, 
the coupling decreases. Obviously, this effect becomes more 
significant with a higher proton density in the case of CH2.  

Fig. 3 shows the weight of the Rayleigh peak for the pure 
carbon, CH and CH2 as in Fig. 2. The form factors for the 
carbon ions and the screening functions are calculated in the 
same manner as for CH described in Fig. 1. The weight of the 
Rayleigh peak for a pure carbon plasma simplifies to 

, whereas three contributions 

have to be added for the two systems of plastics. With the 
occurrence of protons in the system, the ion peak decreases 
nearly by a factor of two. This reflects the change in the partial 
structure factors due to the multi-component description. 
Furthermore, even though the weight of the Rayleigh peak is 
mainly dominated by the scattering on the carbon ions the fully 
multi-component description is necessary to get the correct 
statistical weight given by the densities of the elements 
considered. An increase of the proton density, like given with 
CH2, leads to a further decrease of the elastic ion feature.   

Conclusions 
In this contribution, we investigate the effects of multiple ion 
species on the x-ray scattering process from warm dense matter. 
In particular, we discuss elastic scattering, that is, the weight of 
the Rayleigh peak. Based on partial structure factors from 
hypernetted chain solutions, a generalised approach of the 
theoretical model is applied to account for multi-component 
effects. We demonstrate that mutual correlations significantly 
influence the partial structure factors due to the fact that the 
ions with the highest charge imprint their structure on the other 
components. The weight of the Rayleigh peak that is directly 
related to the static structure factors is thus also sensitive to the 
interplay between the different correlated ions in the systems. 
These effects are especially pronounced in the case of forward 
scattering, i.e. for small k values. Furthermore, we demonstrate 
that the full multi-component description is also necessary for 
cases where x-ray scattering is dominated by one species. This 
effect is related to the differences in the statistical weight of the 
different contributions to the Rayleigh peak.  
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